scholarly journals Design-Centered HRI Governance for Healthcare Robots

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yueh-Hsuan Weng ◽  
Yasuhisa Hirata

Recent developments have shown that not only are AI and robotics growing more sophisticated, but also these fields are evolving together. The applications that emerge from this trend will break current limitations and ensure that robotic decision making and functionality are more autonomous, connected, and interactive in a way which will support people in their daily lives. However, in areas such as healthcare robotics, legal and ethical concerns will arise as increasingly advanced intelligence functions are incorporated into robotic systems. Using a case study, this paper proposes a unique design-centered approach which tackles the issue of data protection and privacy risk in human-robot interaction.

2011 ◽  
Vol 30 (5) ◽  
pp. 846-868 ◽  
Author(s):  
Estela Bicho ◽  
Wolfram Erlhagen ◽  
Luis Louro ◽  
Eliana Costa e Silva

2007 ◽  
Vol 8 (3) ◽  
pp. 391-410 ◽  
Author(s):  
Justine Cassell ◽  
Andrea Tartaro

What is the hallmark of success in human–agent interaction? In animation and robotics, many have concentrated on the looks of the agent — whether the appearance is realistic or lifelike. We present an alternative benchmark that lies in the dyad and not the agent alone: Does the agent’s behavior evoke intersubjectivity from the user? That is, in both conscious and unconscious communication, do users react to behaviorally realistic agents in the same way they react to other humans? Do users appear to attribute similar thoughts and actions? We discuss why we distinguish between appearance and behavior, why we use the benchmark of intersubjectivity, our methodology for applying this benchmark to embodied conversational agents (ECAs), and why we believe this benchmark should be applied to human–robot interaction.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2691 ◽  
Author(s):  
Marcos Maroto-Gómez ◽  
Álvaro Castro-González ◽  
José Castillo ◽  
María Malfaz ◽  
Miguel Salichs

Nowadays, many robotic applications require robots making their own decisions and adapting to different conditions and users. This work presents a biologically inspired decision making system, based on drives, motivations, wellbeing, and self-learning, that governs the behavior of the robot considering both internal and external circumstances. In this paper we state the biological foundations that drove the design of the system, as well as how it has been implemented in a real robot. Following a homeostatic approach, the ultimate goal of the robot is to keep its wellbeing as high as possible. In order to achieve this goal, our decision making system uses learning mechanisms to assess the best action to execute at any moment. Considering that the proposed system has been implemented in a real social robot, human-robot interaction is of paramount importance and the learned behaviors of the robot are oriented to foster the interactions with the user. The operation of the system is shown in a scenario where the robot Mini plays games with a user. In this context, we have included a robust user detection mechanism tailored for short distance interactions. After the learning phase, the robot has learned how to lead the user to interact with it in a natural way.


Author(s):  
Matthias Scheutz ◽  
Paul Schermerhorn

Effective decision-making under real-world conditions can be very difficult as purely rational methods of decision-making are often not feasible or applicable. Psychologists have long hypothesized that humans are able to cope with time and resource limitations by employing affective evaluations rather than rational ones. In this chapter, we present the distributed integrated affect cognition and reflection architecture DIARC for social robots intended for natural human-robot interaction and demonstrate the utility of its human-inspired affect mechanisms for the selection of tasks and goals. Specifically, we show that DIARC incorporates affect mechanisms throughout the architecture, which are based on “evaluation signals” generated in each architectural component to obtain quick and efficient estimates of the state of the component, and illustrate the operation and utility of these mechanisms with examples from human-robot interaction experiments.


Author(s):  
Louise LePage

AbstractStage plays, theories of theatre, narrative studies, and robotics research can serve to identify, explore, and interrogate theatrical elements that support the effective performance of sociable humanoid robots. Theatre, including its parts of performance, aesthetics, character, and genre, can also reveal features of human–robot interaction key to creating humanoid robots that are likeable rather than uncanny. In particular, this can be achieved by relating Mori's (1970/2012) concept of total appearance to realism. Realism is broader and more subtle in its workings than is generally recognised in its operationalization in studies that focus solely on appearance. For example, it is complicated by genre. A realistic character cast in a detective drama will convey different qualities and expectations than the same character in a dystopian drama or romantic comedy. The implications of realism and genre carry over into real life. As stage performances and robotics studies reveal, likeability depends on creating aesthetically coherent representations of character, where all the parts coalesce to produce a socially identifiable figure demonstrating predictable behaviour.


2020 ◽  
Vol 10 (17) ◽  
pp. 5757
Author(s):  
Elena Laudante ◽  
Alessandro Greco ◽  
Mario Caterino ◽  
Marcello Fera

In current industrial systems, automation is a very important aspect for assessing manufacturing production performance related to working times, accuracy of operations and quality. In particular, the introduction of a robotic system in the working area should guarantee some improvements, such as risks reduction for human operators, better quality results and a speed increase for production processes. In this context, human action remains still necessary to carry out part of the subtasks, as in the case of composites assembly processes. This study aims at presenting a case study regarding the reorganization of the working activity carried out in workstation in which a composite fuselage panel is assembled in order to demonstrate, by means of simulation tool, that some of the advantages previously listed can be achieved also in aerospace industry. In particular, an entire working process for composite fuselage panel assembling will be simulated and analyzed in order to demonstrate and verify the applicability and effectiveness of human–robot interaction (HRI), focusing on working times and ergonomics and respecting the constraints imposed by standards ISO 10218 and ISO TS 15066. Results show the effectiveness of HRI both in terms of assembly performance, by reducing working times and ergonomics—for which the simulation provides a very low risk index.


Author(s):  
Laura Fiorini ◽  
Raffaele Limosani ◽  
Raffaele Esposito ◽  
Alessandro Manzi ◽  
Alessandra Moschetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document