scholarly journals Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Hatim Z Almarzouki

The quantity of data required to give a valid analysis grows exponentially as machine learning dimensionality increases. In a single experiment, microarrays or gene expression profiling assesses and determines gene expression levels and patterns in various cell types or tissues. The advent of DNA microarray technology has enabled simultaneous intensive care of hundreds of gene expressions on a single chip, advancing cancer categorization. The most challenging aspect of categorization is working out many information points from many sources. The proposed approach uses microarray data to train deep learning algorithms on extracted features and then uses the Latent Feature Selection Technique to reduce classification time and increase accuracy. The feature-selection-based techniques will pick the important genes before classifying microarray data for cancer prediction and diagnosis. These methods improve classification accuracy by removing duplicate and superfluous information. The Artificial Bee Colony (ABC) technique of feature selection was proposed in this research using bone marrow PC gene expression data. The ABC algorithm, based on swarm intelligence, has been proposed for gene identification. The ABC has been used here for feature selection that generates a subset of features and every feature produced by the spectators, making this a wrapper-based feature selection system. This method’s main goal is to choose the fewest genes that are critical to PC performance while also increasing prediction accuracy. Convolutional Neural Networks were used to classify tumors without labelling them. Lung, kidney, and brain cancer datasets were used in the procedure’s training and testing stages. Using the cross-validation technique of k-fold methodology, the Convolutional Neural Network has an accuracy rate of 96.43%. The suggested research includes techniques for preprocessing and modifying gene expression data to enhance future cancer detection accuracy.

2019 ◽  
Vol 12 (04) ◽  
pp. 1950039 ◽  
Author(s):  
Sarah M. Ayyad ◽  
Ahmed I. Saleh ◽  
Labib M. Labib

Classification of gene expression data is a pivotal research area that plays a substantial role in diagnosis and prediction of diseases. Generally, feature selection is one of the extensively used techniques in data mining approaches, especially in classification. Gene expression data are usually composed of dozens of samples characterized by thousands of genes. This increases the dimensionality coupled with the existence of irrelevant and redundant features. Accordingly, the selection of informative genes (features) becomes difficult, which badly affects the gene classification accuracy. In this paper, we consider the feature selection for classifying gene expression microarray datasets. The goal is to detect the most possibly cancer-related genes in a distributed manner, which helps in effectively classifying the samples. Initially, the available huge amount of considered features are subdivided and distributed among several processors. Then, a new filter selection method based on a fuzzy inference system is applied to each subset of the dataset. Finally, all the resulted features are ranked, then a wrapper-based selection method is applied. Experimental results showed that our proposed feature selection technique performs better than other techniques since it produces lower time latency and improves classification performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ghaith Manita ◽  
Ouajdi Korbaa

DNA Microarray technology is an emergent field, which offers the possibility of obtaining simultaneous estimates of the expression levels of several thousand genes in an organism in a single experiment. One of the most significant challenges in this research field is to select high relevant genes from gene expression data. To address this problem, feature selection is a well-known technique to eliminate unnecessary genes in order to ensure accurate classification results. This paper proposes a binary version of Political Optimizer (PO) to solve feature selection problem using gene expression data. Two transfer functions are used to design a binary PO. The first one is based on Sigmoid function and will be noted as BPO-S, while the second one is based on V-shaped function and will be noted as BPO-V. The proposed methods are evaluated using 9 biological datasets and compared with 8 binary well-known metaheuristics. The comparative results show the prevalent performance of the BPO methods especially BPO-V in comparison with other techniques.


2013 ◽  
Vol 11 (03) ◽  
pp. 1341006
Author(s):  
QIANG LOU ◽  
ZORAN OBRADOVIC

In order to more accurately predict an individual's health status, in clinical applications it is often important to perform analysis of high-dimensional gene expression data that varies with time. A major challenge in predicting from such temporal microarray data is that the number of biomarkers used as features is typically much larger than the number of labeled subjects. One way to address this challenge is to perform feature selection as a preprocessing step and then apply a classification method on selected features. However, traditional feature selection methods cannot handle multivariate temporal data without applying techniques that flatten temporal data into a single matrix in advance. In this study, a feature selection filter that can directly select informative features from temporal gene expression data is proposed. In our approach, we measure the distance between multivariate temporal data from two subjects. Based on this distance, we define the objective function of temporal margin based feature selection to maximize each subject's temporal margin in its own relevant subspace. The experimental results on synthetic and two real flu data sets provide evidence that our method outperforms the alternatives, which flatten the temporal data in advance.


2011 ◽  
Vol 110-116 ◽  
pp. 1948-1952
Author(s):  
Patharawut Saengsiri ◽  
Sageemas Na Wichian ◽  
Phayung Meesad

Finding subset of informative gene is very crucial for biology process because several genes increase sharply and most of them are not related with others. In general, feature selection technique consists of two steps 1) all genes is ranked by a filter approach 2) rank list is sent to a wrapper approach. Nevertheless, the accuracy rate for recognition gene is not enough. Therefore, this paper proposes efficient feature selection model for gene expression data. First, two filter approaches are used to define many subset of attribute such as Correlation based Feature Selection (Cfs) and Gain Ratio (GR). Second, wrapper approach is used to evaluate each length of attribute that based on Support Vector Machine (SVM) and Random Forest (RF). The result of experiment depicts CfsSVM, CfsRF, GRSVM, and GRRF based on proposed model produce higher accuracy rate such as 87.10%, 90.32%, 87.10, and 88.71%, respectively.


Microarray technology has been developed as one of the powerful tools that have attracted many researchers to analyze gene expression level for a given organism. It has been observed that gene expression data have very large (in terms of thousands) of features and less number of samples (in terms of hundreds). This characteristic makes difficult to do an analysis of gene expression data. Hence efficient feature selection technique must be applied before we go for any kind of analysis. Feature selection plays a vital role in the classification of gene expression data. There are several feature selection techniques have been induced in this field. But Support Vector Machine with Recursive Feature Elimination (SVM-RFE) has been proven as the promising feature selection methods among others. SVM-RFE ranks the genes (features) by training the SVM classification model and with the combination of RFE method key genes are selected. Huge time consumption is the main issue of SVM-RFE. We introduced an efficient implementation of linier SVM to overcome this problem and improved the RFE with variable step size. Then, combined method was used for selecting informative genes. Effective resampling method is proposed to preprocess the datasets. This is used to make the distribution of samples balanced, which gives more reliable classification results. In this paper, we have also studied the applicability of common classifiers. Detailed experiments are conducted on four commonly used microarray gene expression datasets. The results show that the proposed method comparable classification performance


2019 ◽  
Vol 21 (9) ◽  
pp. 631-645 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Kabir ◽  
Zakir Ali ◽  
Muhammad Arif ◽  
Farman Ali ◽  
...  

Aim and Objective: Cancer is a dangerous disease worldwide, caused by somatic mutations in the genome. Diagnosis of this deadly disease at an early stage is exceptionally new clinical application of microarray data. In DNA microarray technology, gene expression data have a high dimension with small sample size. Therefore, the development of efficient and robust feature selection methods is indispensable that identify a small set of genes to achieve better classification performance. Materials and Methods: In this study, we developed a hybrid feature selection method that integrates correlation-based feature selection (CFS) and Multi-Objective Evolutionary Algorithm (MOEA) approaches which select the highly informative genes. The hybrid model with Redial base function neural network (RBFNN) classifier has been evaluated on 11 benchmark gene expression datasets by employing a 10-fold cross-validation test. Results: The experimental results are compared with seven conventional-based feature selection and other methods in the literature, which shows that our approach owned the obvious merits in the aspect of classification accuracy ratio and some genes selected by extensive comparing with other methods. Conclusion: Our proposed CFS-MOEA algorithm attained up to 100% classification accuracy for six out of eleven datasets with a minimal sized predictive gene subset.


Sign in / Sign up

Export Citation Format

Share Document