scholarly journals Research on Trajectory Planning in Thunderstorm Weather Based on Dynamic Window Algorithm during Approach Segment

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Li Lu ◽  
Chenyu Liu

Dynamic window algorithm (DWA) is a local path-planning algorithm, which can be used for obstacle avoidance through speed selection and obtain the optimal path, but the algorithm mainly plans the path for fixed obstacles. Based on DWA algorithm, this paper proposes an improved DWA algorithm based on space-time correlation, namely, space-time dynamic window approach. In SDWA algorithm, a DWA associated with obstacle position and time is proposed to achieve the purpose of path planning for moving obstacles. Then, by setting the coordinates of the initial moving obstacle and identifying safety distance, we can define the shape of the obstacle and the path planning of the approach segment in thunderstorm weather based on the SDWA model was realized. Finally, the superior performance of the model was verified by setting moving obstacles for path planning and selecting the aircraft approach segment in actual thunderstorm weather. The results showed that SDWA has good path-planning performance in a dynamic environment. Its path-planning results were very similar to an actual aircraft performing thunderstorm-avoidance maneuvers, but with more smooth and economical trajectory. The proposed SDWA model had great decision-making potential for approach segment planning in thunderstorm weather.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zihan Yu ◽  
Linying Xiang

In recent years, the path planning of robot has been a hot research direction, and multirobot formation has practical application prospect in our life. This article proposes a hybrid path planning algorithm applied to robot formation. The improved Rapidly Exploring Random Trees algorithm PQ-RRT ∗ with new distance evaluation function is used as a global planning algorithm to generate the initial global path. The determined parent nodes and child nodes are used as the starting points and target points of the local planning algorithm, respectively. The dynamic window approach is used as the local planning algorithm to avoid dynamic obstacles. At the same time, the algorithm restricts the movement of robots inside the formation to avoid internal collisions. The local optimal path is selected by the evaluation function containing the possibility of formation collision. Therefore, multiple mobile robots can quickly and safely reach the global target point in a complex environment with dynamic and static obstacles through the hybrid path planning algorithm. Numerical simulations are given to verify the effectiveness and superiority of the proposed hybrid path planning algorithm.


2014 ◽  
Vol 984-985 ◽  
pp. 1229-1234
Author(s):  
K. Sudhagar ◽  
M. Bala Subramanian ◽  
G. Rajarajeswari

Optimal path planning is considered to be the key area, which gives much attention to researchers in the field of robotic research community. In this paper, a comprehensive simulation study was made on applying heuristic based optimal path planning algorithm of a mobile robot agent in an dynamic environment. This study aims on the behavioural aspects, exploration and navigational aspects along with optimal path analysis of a mobile robot agent. The behaviour selection of a mobile robot agent is considered to be the key challenge for designing a control architecture system, in which it is highly suitable for dynamically changing environment. A mobile robot agent participating for mission critical application will explore into an known environment without any discrepancy, but exploring into an unknown environment will be a challenging criterion, considering its constraints such as time, cost, energy, exploration distance etc., This paper aims on navigational study of the mobile robot agent participating in dynamically changing environments, using heuristic approach. The System evaluation is validated using Graphical User Interface (GUI) based test-bed for Robots called RoboSim and the efficiency of the system is measured, via Simulation Results. Simulation results prove that applying A* algorithm in an unknown environment explores much faster than other path planning algorithms.


2021 ◽  
Vol 11 (6) ◽  
pp. 2587
Author(s):  
Evan Prianto ◽  
Jae-Han Park ◽  
Ji-Hun Bae ◽  
Jung-Su Kim

In the workspace of robot manipulators in practice, it is common that there are both static and periodic moving obstacles. Existing results in the literature have been focusing mainly on the static obstacles. This paper is concerned with multi-arm manipulators with periodically moving obstacles. Due to the high-dimensional property and the moving obstacles, existing results suffer from finding the optimal path for given arbitrary starting and goal points. To solve the path planning problem, this paper presents a SAC-based (Soft actor–critic) path planning algorithm for multi-arm manipulators with periodically moving obstacles. In particular, the deep neural networks in the SAC are designed such that they utilize the position information of the moving obstacles over the past finite time horizon. In addition, the hindsight experience replay (HER) technique is employed to use the training data efficiently. In order to show the performance of the proposed SAC-based path planning, both simulation and experiment results using open manipulators are given.


2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Yushan Sun ◽  
Xiaokun Luo ◽  
Xiangrui Ran ◽  
Guocheng Zhang

This research aims to solve the safe navigation problem of autonomous underwater vehicles (AUVs) in deep ocean, which is a complex and changeable environment with various mountains. When an AUV reaches the deep sea navigation, it encounters many underwater canyons, and the hard valley walls threaten its safety seriously. To solve the problem on the safe driving of AUV in underwater canyons and address the potential of AUV autonomous obstacle avoidance in uncertain environments, an improved AUV path planning algorithm based on the deep deterministic policy gradient (DDPG) algorithm is proposed in this work. This method refers to an end-to-end path planning algorithm that optimizes the strategy directly. It takes sensor information as input and driving speed and yaw angle as outputs. The path planning algorithm can reach the predetermined target point while avoiding large-scale static obstacles, such as valley walls in the simulated underwater canyon environment, as well as sudden small-scale dynamic obstacles, such as marine life and other vehicles. In addition, this research aims at the multi-objective structure of the obstacle avoidance of path planning, modularized reward function design, and combined artificial potential field method to set continuous rewards. This research also proposes a new algorithm called deep SumTree-deterministic policy gradient algorithm (SumTree-DDPG), which improves the random storage and extraction strategy of DDPG algorithm experience samples. According to the importance of the experience samples, the samples are classified and stored in combination with the SumTree structure, high-quality samples are extracted continuously, and SumTree-DDPG algorithm finally improves the speed of the convergence model. Finally, this research uses Python language to write an underwater canyon simulation environment and builds a deep reinforcement learning simulation platform on a high-performance computer to conduct simulation learning training for AUV. Data simulation verified that the proposed path planning method can guide the under-actuated underwater robot to navigate to the target without colliding with any obstacles. In comparison with the DDPG algorithm, the stability, training’s total reward, and robustness of the improved Sumtree-DDPG algorithm planner in this study are better.


2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.


Author(s):  
Hrishikesh Dey ◽  
Rithika Ranadive ◽  
Abhishek Chaudhari

Path planning algorithm integrated with a velocity profile generation-based navigation system is one of the most important aspects of an autonomous driving system. In this paper, a real-time path planning solution to obtain a feasible and collision-free trajectory is proposed for navigating an autonomous car on a virtual highway. This is achieved by designing the navigation algorithm to incorporate a path planner for finding the optimal path, and a velocity planning algorithm for ensuring a safe and comfortable motion along the obtained path. The navigation algorithm was validated on the Unity 3D Highway-Simulated Environment for practical driving while maintaining velocity and acceleration constraints. The autonomous vehicle drives at the maximum specified velocity until interrupted by vehicular traffic, whereas then, the path planner, based on the various constraints provided by the simulator using µWebSockets, decides to either decelerate the vehicle or shift to a more secure lane. Subsequently, a splinebased trajectory generation for this path results in continuous and smooth trajectories. The velocity planner employs an analytical method based on trapezoidal velocity profile to generate velocities for the vehicle traveling along the precomputed path. To provide smooth control, an s-like trapezoidal profile is considered that uses a cubic spline for generating velocities for the ramp-up and ramp-down portions of the curve. The acceleration and velocity constraints, which are derived from road limitations and physical systems, are explicitly considered. Depending upon these constraints and higher module requirements (e.g., maintaining velocity, and stopping), an appropriate segment of the velocity profile is deployed. The motion profiles for all the use-cases are generated and verified graphically.


Author(s):  
Amr Mohamed ◽  
Moustafa El-Gindy ◽  
Jing Ren ◽  
Haoxiang Lang

This paper presents an optimal collision-free path planning algorithm of an autonomous multi-wheeled combat vehicle using optimal control theory and artificial potential field function (APF). The optimal path of the autonomous vehicle between a given starting and goal points is generated by an optimal path planning algorithm. The cost function of the path planning is solved together with vehicle dynamics equations to satisfy the vehicle dynamics constraints and the boundary conditions. For this purpose, a simplified four-axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw dynamics while neglecting roll dynamics is used. The obstacle avoidance technique is mathematically modeled based on the proposed sigmoid function as the artificial potential field method. This potential function is assigned to each obstacle as a repulsive potential field. The inclusion of these potential fields results in a new APF which controls the steering angle of the autonomous vehicle to reach the goal point. A full nonlinear multi-wheeled combat vehicle model in TruckSim software is used for validation. This is done by importing the generated optimal path data from the introduced optimal path planning MATLAB algorithm and comparing lateral acceleration, yaw rate and curvature at different speeds (9 km/h, 28 km/h) for both simplified and TruckSim vehicle model. The simulation results show that the obtained optimal path for the autonomous multi-wheeled combat vehicle satisfies all vehicle dynamics constraints and successfully validated with TruckSim vehicle model.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094473
Author(s):  
Kefei Shen ◽  
Chen Li ◽  
Difei Xu ◽  
Weihong Wu ◽  
He Wan

Automated guided vehicles (AGVs) have been regarded as a promising means for the future delivery industry by many logistic companies. Several AGV-based delivery systems have been proposed, but they generally have drawbacks in delivering and locating baggage by magnet line, such as the high maintenance cost, and it is hard to change the trajectory of AGV. This article considers using multi-AGVs as delivery robots to coordinate and sort baggage in the large international airport. This system has the merit of enlarging the accuracy of baggage sorting and delivering. Due to the inaccurate transportation efficiency, a time-dependent stochastic baggage delivery system is proposed and a stochastic model is constructed to characterize the running priority and optimal path planning for multi-AGVs according to the flight information. In the proposed system, ultra-wideband technology is applied to realize precisely positioning and navigation for multi-AGVs in the baggage distribution center. Furthermore, the optimal path planning algorithm based on time-window rules and rapidly exploring random tree algorithm is considered to avoid collision and maneuverability constraints and to determine whether the running path for each AGV is feasible and optimal. Computer simulations are conducted to demonstrate the performance of the proposed method.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092004
Author(s):  
Yong-Lin Kuo ◽  
Chun-Chen Lin ◽  
Zheng-Ting Lin

This article presents a dual-optimization trajectory planning algorithm, which consists of the optimal path planning and the optimal motion profile planning for robot manipulators, where the path planning is based on parametric curves. In path planning, a virtual-knot interpolation is proposed for the paths required to pass through all control points, so the common curves, such as Bézier curves and B-splines, can be incorporated into it. Besides, an optimal B-spline is proposed to generate a smoother and shorter path, and this scheme is especially suitable for closed paths. In motion profile planning, a generalized formulation of time-optimal velocity profiles is proposed, which can be implemented to any types of motion profiles with equality and inequality constraints. Also, a multisegment cubic velocity profile is proposed by solving a multiobjective optimization problem. Furthermore, a case study of a dispensing robot is investigated through the proposed dual-optimization algorithm applied to numerical simulations and experimental work.


Sign in / Sign up

Export Citation Format

Share Document