scholarly journals Breakage Characteristics of Quartz Sand Based on Ring Shear Tests: Implications for the Fragmentation Processes of Rock Avalanches

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xinxin Zheng ◽  
Ruichen Chen ◽  
Jian Chen ◽  
Song Chen ◽  
Lulu Shi

To investigate the effects of internal shear fragmentation on dry granular flow, in this study a series of ring shear tests were performed on quartz sand samples under different normal stresses (100 kPa, 200 kPa, and 300 kPa), shear displacements (3 m, 5 m, 10m, 15 m, and 20 m), and shear rates (30 deg min−1, 60 deg min−1, and 90 deg min−1). Next, the grain-size distributions, fractal dimensions, and microcharacteristics of the quartz sand before and after the experiments were compared and analyzed. The study results show that grain breakage under shearing preferentially occurs at the edges of the particles and forms a bimodal distribution in frequency grain-size distribution curves, which is consistent with observations of rock avalanches. The fine particles prevent the coarse particles from breaking, in turn leading to the ultimate grain-size distribution and stable fractal dimension (2.61) of quartz sand at relatively small shear displacements compared with the travel distance of rock avalanches. The results of this study suggest that the fragmentation of rock avalanches during the shear spread stage may be far less significant than previously believed. Therefore, the fragmentation effect is not considered to be a major factor of the hypermobility in the late stage of rock avalanches.

2010 ◽  
Vol 47 (5) ◽  
pp. 497-515 ◽  
Author(s):  
Abouzar Sadrekarimi ◽  
Scott M. Olson

In this paper, particle damage of three test sands with different mineralogical compositions is studied using stress–displacement response measured in ring shear tests, particle-size distributions of the original sand prior to shear and from the shear band after shear, and by examining particle shape changes determined by scanning electron microscope. Particle damage during shearing produced a wider particle-size distribution, and damage typically continued until the normal stress was small (about 28 kPa) in constant volume ring shear tests and the internal stresses were distributed among sufficient particle contacts such that damage practically ceased. The dominant damage mechanism (typically either particle abrasion and shearing-off asperities or particle splitting) depended strongly on the soil response (i.e., contraction or dilation), particle hardness, and particle-size distribution, but both mechanisms produced particles that were more angular and rougher than the original sand particles. The magnitude of particle damage observed in the ring shear tests was influenced by the consolidation normal stress, shear displacement, particle mineralogy, particle-size distribution, drainage conditions, and soil fabric (in constant volume tests). Lastly, the influence of particle damage on engineering properties including hydraulic conductivity, liquefaction resistance, stress–strain response, friction angle, and critical state are briefly discussed.


2021 ◽  
Author(s):  
Odin Marc ◽  
Jens Turowski ◽  
Patrick Meunier

<div>The size of grains delivered to rivers by hillslopes processes is thought to be a key factor to better understand sediment transport, long-term erosion as well as sedimentary archives. Recently, models have been developed for the grain size distribution produced in soils, but they may be irrelevant to active orogens where high erosion rates on hillslopes are driven by landsliding. Still, until now relatively few studies have focused on measuring and explaining the variability of landslide grain size distributions.</div><div>Here we present grain size distribution obtained by the grid-by-number method on 17 recent landslide deposits in Taiwan, and we compare it to the geometrical and physical properties of the landslides, such as their width, area, rock-type and strength, drop height and estimated depth. All landslides occurred in slightly metamorphosed sedimentary units, except two which occurred in younger unmetamorphosed shales, with rock strength expected to be 3 to 10 times weaker from their metamorphosed counterparts. We found that 4 deposits displayed a strong grain size segregation on their deposit with grains at the toe (downslope) of the deposit 3 to 10 times coarser than the one at the apex. In 3 cases, we could also measure the grain size distribution inside the landslides that presented percentiles 3 to 10 times finer than the surface of their deposits. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure but we could not explain why only some deposits had a strong segregation.</div><div>Averaging this spatial variability we found the median grain size (D50) of the deposits to be strongly negatively correlated to drop height, scar width and depth. However, previous work suggests that regolith particlesvand bedrock blocks should become coarser with increasing depth (Cohen et al., 2010; Clarke and Burbank, 2011), opposite to our observation. Accounting for a model of regolith coarsening with depth, we found that the ratio of the original bedrock blocksize and the D50 was proportional to the potential energy of the landslide normalized to its bedrock strength. Thus the studied landslides agree well with the simple fragmentation model from Locat et al. (2006), even if it was calibrated on much larger and much stronger rock avalanches. This scaling may thus serve for future model of grain size transfer from hillslopes to river, trying to better understand landslide sediment evacuation and the coupling between hillslopes and river erosional dynamic.</div><div> </div><div>References:</div><div> <div> <div>Clarke, B. A. and Burbank, D. W.: Quantifying bedrock-fracture patterns within the shallow subsurface: Implications for rock mass strength, bedrock landslides, and erodibility, Journal of Geophysical Research: Earth Surface, 116(F4), F04009, , 2011.</div> <div>Cohen, S., Willgoose, G. and Hancock, G.: The mARM3D spatially distributed soil evolution model: Three-dimensional model framework and analysis of hillslope and landform responses, Journal of Geophysical Research: Earth Surface, 115(F4), , 2010.</div> <div>Locat, P., Couture, R., Leroueil, S., Locat, J. and Jaboyedoff, M.: Fragmentation energy in rock avalanches, Canadian Geotechnical Journal, 43(8), 830–851, , 2006.</div> </div> </div><div> </div>


Sign in / Sign up

Export Citation Format

Share Document