scholarly journals Transfer scattering matrix of non-uniform surface acoustic wave transducers

1987 ◽  
Vol 10 (3) ◽  
pp. 563-581
Author(s):  
N. C. Debnath ◽  
T. Roy

This paper is concerned with a general mathematical theory for finding the admittance matrix of a three-port non-uniform surface acoustic wave (SAW) network characterized bynunequal hybrid sections. The SAW interdigital transducer and its various circuit model representations are presented in some detail. The Transfer scattering matrix of a transducer consisting ofNnon-uniform sections modeled through the hybrid equivalent circuit is discussed. General expression of the scattering matrix elements for aN-section SAW network is included. Based upon hybrid equivalent circuit model of one electrode section, explicit formulas for the scattering and transfer scattering matrices of a SAW transducer are obtained. Expressions of the transfer scattering matrix elements for theN-section crossed-field and in-line model of SAW transducers are also derived as special cases. The matrix elements are computed in terms of complex frequency and thus allow for transient response determinations. It is shown that the general forms presented here for the matrix elements are suitable for the computer aided design of SAW transducers.

Author(s):  
Raphael C. O. Jesus ◽  
Elyson A. N. Carvalho ◽  
Ollivier Tamarin ◽  
Raimundo C. S. Freire ◽  
Corinne Dejous

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 303
Author(s):  
Giovanni Gugliandolo ◽  
Zlatica Marinković ◽  
Giuseppe Campobello ◽  
Giovanni Crupi ◽  
Nicola Donato

Nowadays, surface acoustic wave (SAW) resonators are attracting growing attention, owing to their widespread applications in various engineering fields, such as electronic, telecommunication, automotive, chemical, and biomedical engineering. A thorough assessment of SAW performance is a key task for bridging the gap between commercial SAW devices and practical applications. To contribute to the accomplishment of this crucial task, the present paper reports the findings of a new comparative study that is based on the performance evaluation of different commercial SAW resonators by using scattering (S-) parameter measurements coupled with a Lorentzian fitting and an accurate modelling technique for the straightforward extraction of a lumped-element equivalent-circuit representation. The developed investigation thus provides ease and reliability when choosing the appropriate commercial device, depending on the requirements and constraints of the given sensing application. This paper deals with the performance evaluation of commercial surface acoustic wave (SAW) resonators by means of scattering (S-) parameter measurements and an equivalent-circuit model extracted using a reliable modeling procedure. The studied devices are four TO-39 packaged two-port resonators with different nominal operating frequencies: 418.05, 423.22, 433.92, and 915 MHz. The S-parameter characterization was performed locally around the resonant frequencies of the tested SAW resonators by using an 8753ES Agilent vector network analyzer (VNA) and a home-made calibration kit. The reported measurement-based study has allowed for the development of a comprehensive and detailed comparative analysis of the performance of the investigated SAW devices. The characterization and modelling procedures are fully automated with a user-friendly graphical user interface (GUI) developed in the Python environment, thereby making the experimental analysis faster and more efficient.


Sign in / Sign up

Export Citation Format

Share Document