scholarly journals Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems

2000 ◽  
Vol 4 (3) ◽  
pp. 207-215 ◽  
Author(s):  
Andrzej Stefanski ◽  
Tomasz kapitaniak

We describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction, (ii) with impacts.

Author(s):  
Andrzej Stefanski ◽  
Jerzy Wojewoda ◽  
Tomasz Kapitaniak ◽  
John Brindley

Abstract Properties of chaos synchronization have been used for estimation of the largest Lyapunov exponent of a discontinuous mechanical system. A method for such estimation is proposed and an example is shown, based on coupling of two identical systems with dry friction which is modelled according to the Popp-Stelter formula.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350065 ◽  
Author(s):  
VAHID RASHTCHI ◽  
MOHSEN NOURAZAR

Detecting the state of the Duffing oscillator, a type of well-known chaotic oscillator, deeply affects the accuracy of its application. Considering this, the present paper introduced a novel method for detecting the state of the Duffing oscillator. Binary outputs, simple calculation, high precision and fast response time were the main advantages of the phase space trajectory autocorrelation. Also, this study explained the largest Lyapunov exponent as well as a number of other methods commonly employed in detecting the state of the Duffing oscillator. The precision and effectiveness of the method introduced was compared with other well-known state detection methods such as the 0-1 test and the largest Lyapunov exponent.


Author(s):  
Andrzej Stefanski ◽  
Tomasz Kapitaniak ◽  
John Brindley

Abstract A novel method of estimation of the largest Lyapunov exponent for discrete maps is introduced and evaluated for chosen examples of non-smooth dynamical systems. The method exploits the phenomenon of synchronization of two identical discrete maps when one of them is disturbed. Applications of the method for mechanical systems with discontinuities are presented and discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Abigail Ortiz ◽  
Kamil Bradler ◽  
Maxine Mowete ◽  
Stephane MacLean ◽  
Julie Garnham ◽  
...  

Abstract Background Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimension to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess whether these arise from different processes in each of these groups. Results There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F (2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differences between groups for the detrended fluctuation analysis or fractal dimension. Conclusions The underlying nature of mood variability is in keeping with that of a chaotic system, which means that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window for episode prediction in BD will be inevitably short.


Author(s):  
Lionel Rosier

In this chapter, we consider a class of discrete dynamical systems defined on the homogeneous space associated with a regular tiling of RN, whose most familiar example is provided by the N-dimensional torus TN. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that it admits at least one positive Lyapunov exponent. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup.


2018 ◽  
Vol 41 ◽  
pp. 10-20 ◽  
Author(s):  
Alexandra I. Korda ◽  
Pantelis A. Asvestas ◽  
George K. Matsopoulos ◽  
Errikos M. Ventouras ◽  
Nikolaos Smyrnis

Sign in / Sign up

Export Citation Format

Share Document