scholarly journals The quantum spheres and their embedding into quantum Minkowski space-time

2002 ◽  
Vol 2 (7) ◽  
pp. 315-335
Author(s):  
M. Lagraa

We recast the Podleś spheres in the noncommutative physics context by showing that they can be regarded as slices along the time coordinate of the different regions of the quantum Minkowski space-time. The investigation of the transformations of the quantum sphere states under the left coaction of theSOq(3)group leads to a decomposition of the transformed Hilbert space states in terms of orthogonal subspaces exhibiting the periodicity of the quantum sphere states.

2019 ◽  
Vol 74 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe propose that space-time results from collapse of the wave function of macroscopic objects, in quantum dynamics. We first argue that there ought to exist a formulation of quantum theory which does not refer to classical time. We then propose such a formulation by invoking an operator Minkowski space-time on the Hilbert space. We suggest relativistic spontaneous localisation as the mechanism for recovering classical space-time from the underlying theory. Quantum interference in time could be one possible signature for operator time, and in fact may have been already observed in the laboratory, on attosecond time scales. A possible prediction of our work seems to be that interference in time will not be seen for ‘time slit’ separations significantly larger than 100 attosecond, if the ideas of operator time and relativistic spontaneous localisation are correct.


1990 ◽  
Vol 05 (19) ◽  
pp. 3801-3809
Author(s):  
CHRISTOPHER PILOT ◽  
SUBHASH RAJPOOT

A superspace is constructed in which the elements of the superspace consist of the four Minkowski space-time coordinates and a set of vector-spinor coordinates that belong to the irreducible (1, 1/2)+(1/2, 1) representation of the Lorentz group. It is shown that a translation in the vector-spinor coordinates leads to a vector-spinor coordinate dependent translation in the space-time coordinate xμ. The super covariant derivatives are also constructed.


2016 ◽  
Vol 46 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Emilija Nešović ◽  
Milica Grbović

2007 ◽  
Vol 16 (06) ◽  
pp. 1027-1041 ◽  
Author(s):  
EDUARDO A. NOTTE-CUELLO ◽  
WALDYR A. RODRIGUES

Using the Clifford bundle formalism, a Lagrangian theory of the Yang–Mills type (with a gauge fixing term and an auto interacting term) for the gravitational field in Minkowski space–time is presented. It is shown how two simple hypotheses permit the interpretation of the formalism in terms of effective Lorentzian or teleparallel geometries. In the case of a Lorentzian geometry interpretation of the theory, the field equations are shown to be equivalent to Einstein's equations.


2010 ◽  
Vol 07 (02) ◽  
pp. 185-213 ◽  
Author(s):  
DAVID ALBA ◽  
LUCA LUSANNA

We apply the theory of noninertial frames in Minkowski space–time, developed in the previous paper, to various relevant physical systems. We give the 3 + 1 description without coordinate singularities of the rotating disk and the Sagnac effect, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system. Then we study properties of Maxwell equations in noninertial frames like the wrap-up effect and the Faraday rotation in astrophysics.


2015 ◽  
Vol 93 (10) ◽  
pp. 1005-1008 ◽  
Author(s):  
Rasulkhozha S. Sharafiddinov

The unity of the structure of matter fields with flavor symmetry laws involves that the left-handed neutrino in the field of emission can be converted into a right-handed one and vice versa. These transitions together with classical solutions of the Dirac equation testify in favor of the unidenticality of masses, energies, and momenta of neutrinos of the different components. If we recognize such a difference in masses, energies, and momenta, accepting its ideas about that the left-handed neutrino and the right-handed antineutrino refer to long-lived leptons, and the right-handed neutrino and the left-handed antineutrino are short-lived fermions, we would follow the mathematical logic of the Dirac equation in the presence of the flavor symmetrical mass, energy, and momentum matrices. From their point of view, nature itself separates Minkowski space into left and right spaces concerning a certain middle dynamical line. Thereby, it characterizes any Dirac particle both by left and by right space–time coordinates. It is not excluded therefore that whatever the main purposes each of earlier experiments about sterile neutrinos, namely, about right-handed short-lived neutrinos may serve as the source of facts confirming the existence of a mirror Minkowski space–time.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
M. Akyig~it ◽  
S. Ersoy ◽  
İ. Özgür ◽  
M. Tosun

We give the definition of generalized timelike Mannheim curve in Minkowski space-time . The necessary and sufficient conditions for the generalized timelike Mannheim curve are obtained. We show some characterizations of generalized Mannheim curve.


2015 ◽  
Vol 30 (03) ◽  
pp. 1550019 ◽  
Author(s):  
Domagoj Kovačević ◽  
Stjepan Meljanac ◽  
Andjelo Samsarov ◽  
Zoran Škoda

General realizations, star products and plane waves for κ-Minkowski space–time are considered. Systematic construction of general Hermitian realization is presented, with special emphasis on noncommutative plane waves and Hermitian star product. Few examples are elaborated and possible physical applications are mentioned.


Sign in / Sign up

Export Citation Format

Share Document