scholarly journals Investigation on the Texture of an ELC-BH Sheet With Very High R−-Value Processed by New Technology

1995 ◽  
Vol 23 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Guan Xiaojun ◽  
Wang Xianjin ◽  
Wu Qiulin ◽  
Hu Xiaojun

The texture of an extra low-carbon and high strength bake-hardening sheet steel (i.e. ELC-BH sheet) processed in our laboratory through a new invented technology has been investigated by means of ODF method, so that the cause of the very high r¯-value of this sheet has been discovered. Experimental results are shown as follows: ① The r¯-value of the experimental sheet treated by the new process is as high as 2.67 and this is the highest r¯-value published so far for phosphorus – added high strength and deep drawing sheet steels. At the same time, the contradiction between deep-drawability and strengthening is successfully solved too. ② A nucleus of the new technology is supplying a good cold rolled parent state which benefits to the development of {111} annealing textures through controlling texture, while strong development of {111} annealing textures can cause very high r¯-value. ③ The cold rolling and annealing texture obtained by the new technology are quite different as compared with that of conventional process. New cold rolling texture has stronger {111} components and weaker {100} components than conventiopnal cold rolling texture. The concentrations of {111} components of new annealing texture are not only distinctly general increase but also the crystal orientations corresponding to the peak values of orientation concentrations of the texture have been also changed from conventional (1¯11)[11¯2] orientations to (1¯11)[01¯1] orientations.

1998 ◽  
Vol 30 (3-4) ◽  
pp. 229-245
Author(s):  
Xiaojun Guan ◽  
Jiajuan Zhou ◽  
Xiaojun Hu ◽  
Qiulin Wu

Effects of a new technology which made r¯-value increase remarkably on the distributions of the cold rolling and annealing textures through the thickness of an extra low-carbon and high strength bake-hardening sheet steel have been researched by means of the method of ODF. The results are expressed as follows: (1) γ-fiber axis texture in the ELC-BH sheet obtained by the new technology develops so strongly and purely, especially within the sheet. This is the essential cause why r¯-value of the sheet remarkably increases. (2) The very strong γ-fiber axis texture of being completely different from conventional one is closely related to the cold rolled sheet supplied by the new technology which benefits to develop {111} annealing texture strongly. The inside of the cold rolled sheet is far more favorable than its surface to the development of the γ-fiber axis texture.


2013 ◽  
Vol 634-638 ◽  
pp. 1807-1810
Author(s):  
Guang Xu ◽  
Jing Yang ◽  
Tao Xiong ◽  
Peng Deng ◽  
Long Fei Cao

Sub-nano structured steel was obtained by cold rolling and annealing martensite microstructure for a plain carbon steel. The mean grain size is several hundreds nanometer. The steel has very high strength and also good total elongation.


2013 ◽  
Vol 203-204 ◽  
pp. 38-41
Author(s):  
Hanna J. Krztoń ◽  
Dariusz Kuc ◽  
Zofia Kania

The effect of cold rolling and annealing treatments in two temperatures, 800°C and 900°C on texture formation in duplex steel (X60MnAl30-9) was examined. Texture measurements were carried out using X-ray diffraction and Schulz reflection technique. The mechanical properties i. e. 0.2% proof stress, ultimate tensile strength and elongation were measured for each experimental conditions. It was found that ferrite was characterized by the orientations of a fibre which could be found in cold rolling state and also after the annealing in both temperatures. The weak orientations close to g fibre were observed after the annealing. The cold rolling texture of austenite was a typical texture of cold rolled fcc metals. No significant changes in texture of austenite after the annealing treatments were found.


2007 ◽  
Vol 558-559 ◽  
pp. 425-430 ◽  
Author(s):  
Hiromi Yoshida ◽  
Kaneharu Okuda ◽  
Hidetaka Kawabe ◽  
Toshiaki Urabe ◽  
Yasushi Tanaka ◽  
...  

The effect of niobium (Nb) addition on recrystallization texture formation in cold-rolled low carbon steel sheets containing 2% manganese (Mn) was investigated. The microstructures of hot-bands were significantly refined by Nb addition, which led to the development of the cold-rolling texture in both the γ-fiber (<111>//ND-fiber) and the α-fiber (<110>//RD-fiber). Recrystallization was retarded by Nb addition, in particular, the growth of <110>//ND grains was retarded. However, the γ-fiber and {112}<110> grains developed during annealing even in the intercritical (α-γ) region. Consequently, the r-value increased as the content of Nb was increased due to the development of the intensity ratio of the <111>//ND texture to the <100>//ND texture, which is desirable for deep-drawable high strength steel sheets.


2012 ◽  
Vol 706-709 ◽  
pp. 17-23 ◽  
Author(s):  
C. Isaac Garcia ◽  
Ming Jian Hua ◽  
X. Liang ◽  
P. Suikannen ◽  
Anthony J. DeArdo

The very high strength now achievable in low carbon HSLA steel plates is caused by the formation of bainite or martensite during the post-hot rolling cooling in interrupted direct quenching. Modern electron optical examination, especially FEG-SEM, has allowed the microstructural features such as packet, block and lath dimensions and crystallography to be quantitatively determined. Several recent studies have attempted to relate the strength and toughness to these features, with limited success. However, one observation is clear, these microstructural features scale with the prior-austenite grain size and state of recrystallization. The role of microalloying, beyond grain refinement, remains inconclusive. This paper will discuss these microstructures and suggest possible ways of further refining them.


Sign in / Sign up

Export Citation Format

Share Document