scholarly journals Effect of baicalin on mitochondrial membrane potential, Ca2+ and cytochrome C in HCC cell line BEL-7402

2008 ◽  
Vol 16 (5) ◽  
pp. 468
Author(s):  
Xia Guo ◽  
Yu Guo
2014 ◽  
Vol 306 (4) ◽  
pp. C334-C342 ◽  
Author(s):  
Eiji Takahashi ◽  
Michihiko Sato

To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500–2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Toshitaka Yajima ◽  
Stanley Park ◽  
Hanbing Zhou ◽  
Michinari Nakamura ◽  
Mitsuyo Machida ◽  
...  

MAVS is a mitochondrial outer membrane protein that activates innate antiviral signaling by recognizing cytosolic viral RNAs and DNAs. While the discovery of MAVS is the first molecular evidence that links mitochondria to innate immune mechanisms, it is still unclear whether MAVS affects mitochondrial cell death as a member of caspase activation and recruitment domain (CARD)-containing proteins. We found that MAVS interacts with Bax through CARD by Yeast two-hybrid and a series of immunoprecipitation (IP) assay, which led us to hypothesize that MAVS functions not only in the innate antiviral mechanisms but also in the mitochondrial cell death pathway. Methods: 1) We examined molecular interaction between MAVS and Bax under oxidative stress by IP using isolated myocytes with H2O2 stimulation and the heart post ischemia-reperfusion (I/R). 2) We evaluated the effect of MAVS on mitochondrial membrane potential and apoptosis under H2O2 stimulation using isolated myocytes with adenoviral MAVS knockdown. 3) We investigated the impact of MAVS on %myocardial infarction (%MI) post I/R using cardiac-specific MAVS knockout (cKO) and transgenic (cTg) mice which we have originally generated. 4) We examined the effect of MAVS on recombinant Bax (rBax)-mediated cytochrome c release using isolated mitochondria from wild type (WT) and MAVS KO mice. Results: 1) The amount of Bax pulled down with MAVS was significantly increased in isolated myocytes with 0.2 mM H2O2 compared to those without stimulation (mean±SD; 1.808±0.14, n=5, p<0.001) and in the heart post I/R compared to sham (2.2±1.19, n=3, p=0.0081). 2) Myocytes with MAVS knockdown showed clear abnormalities in mitochondrial membrane potential and caspace-3 cleavage with 0.2 mM H2O2 compared to control cardiomyocytes. 3) MAVS cKO had significantly larger %MI than WT (81.9 ± 5.8% vs. 42.6 ± 13.6%, n=8, p=0.0008). In contrast, MAVS cTg had significantly smaller %MI that WT (30.0 ± 4.8% vs. 49.2 ± 4.8%, n=10, p=0.0113). 4) Mitochondria from MAVS KO exhibited cytochrome c release after incubation with 2.5 μ g of rBax while those from WT required 10 μ g of rBax. Conclusion: These results demonstrate that MAVS protects cardiomyocyte under oxidative stress by interfering with Bax-mediated cytochrome c release from mitochondria.


2005 ◽  
Vol 102 (6) ◽  
pp. 1147-1157 ◽  
Author(s):  
Torsten Loop ◽  
David Dovi-Akue ◽  
Michael Frick ◽  
Martin Roesslein ◽  
Lotti Egger ◽  
...  

Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. Conclusion Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.


Sign in / Sign up

Export Citation Format

Share Document