Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized Human Mesenchymal Stem Cells

2005 ◽  
Vol 65 (8) ◽  
pp. 3126-3135 ◽  
Author(s):  
Jorge S. Burns ◽  
Basem M. Abdallah ◽  
Per Guldberg ◽  
Jørgen Rygaard ◽  
Henrik D. Schrøder ◽  
...  
2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Sabine François ◽  
Benoit Usunier ◽  
Luc Douay ◽  
Marc Benderitter ◽  
Alain Chapel

There is little information on the fate of infused mesenchymal stem cells (MSCs) and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs) intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice submitted to total body irradiation (TBI) or local irradiation (abdominal or leg irradiation). The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR). Following their infusion into nonirradiated animals, hMSCs homed to various tissues. Engraftment depended on the dose of irradiation and the area exposed. Total body irradiation induced an increased hMSC engraftment level compared to nonirradiated mice, while local irradiations increased hMSC engraftment locally in the area of irradiation. Long-term engraftment of systemically administered hMSCs in NOD/SCID mice increased significantly in response to tissue injuries produced by local or total body irradiation until 2 weeks then slowly decreased depending on organs and the configuration of irradiation. In all cases, no tissue abnormality or abnormal hMSCs proliferation was observed at 120 days after irradiation. This work supports the safe and efficient use of MSCs by injection as an alternative approach in the short- and long-term treatment of severe complications after radiotherapy for patients refractory to conventional treatments.


2017 ◽  
Vol 105 (7) ◽  
pp. 1927-1939 ◽  
Author(s):  
Gaurav Lalwani ◽  
Michael D'agati ◽  
Anu Gopalan ◽  
Sunny C. Patel ◽  
Yahfi Talukdar ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3471-3471
Author(s):  
Sarah Vaiselbuh ◽  
Jeffrey Michael Lipton ◽  
Johnson M. Liu

Abstract CD133 (prominin-1) is the first in a class of novel pentaspan membrane proteins identified in humans and mice, and studies have since confirmed the utility of CD133 as a marker of stem cells with hematopoietic and non-hematopoietic lineage potential. A number of human transplantation studies have documented hematopoietic reconstitution from CD133+ stem cells from mismatched donors, with a suggested advantage over standard grafts in avoidance of graft versus host disease. We have developed a novel hematopoietic culture system (Long-Term Stem Cell Culture or LTSCC) to investigate the potential of human mesenchymal stem cells (MSC) to form stroma that can support short- and long-term hematopoiesis derived from cord blood (CB)-derived CD133+ cells. In addition, we analyzed the effect of stromal derived factor-1 (SDF-1/CXCL12) on survival and short-and long-term colony-forming capacity of CD133+ hematopoiesis. LTSCC induced stroma-like changes in the MSC feeder layer, with adipocyte formation, thought to be needed for formation of stem cell niches, and supported long-term (>9 weeks) survival of CB-CD133+ cells. Cobblestone areas of active CD133-derived hematopoiesis were seen in LTSCC for up to 9 weeks of culture. SDF-1/CXCL12 acted as a survival factor for CB-CD133+ cells and induced a significant ex vivo cell expansion at weeks 3 and 4 of LTSCC (maximal 500-fold increase), while maintaining the capacity for CFU-Mix and BFU-E colony formation up to 7 weeks. Long-term hematopoiesis was assessed by enumeration of long-term culture initiating cells (LTC-IC). When SDF-1/CXCL12 was added to LTSCC, we found a significant increase in LTC-IC: 0.3% (+SDF-1/CXCL12) vs. 0.05% (-SDF-1/CXCL12). Finally, homing capacity, as defined by SDF-1/CXCL12-induced adhesion and migration of CB-CD133+ cells, was maintained and even increased during the first 3 weeks of LTSCC. In summary, MSC can be maintained in LTSCC medium, and this simplified feeder layer is able to provide niches for cobblestone area forming cells derived from CB-CD133+ cells. SDF-1/CXCL12 is critical to support the survival and expansion of CD133+ cells, either directly or indirectly by paracrinesignaled retention of CD133+ cells in contact with specialized MSC niches. We suggest that expansion of CD133+ cells from cord blood may be useful in clinical transplantation limited by insufficient numbers of stem cells.


Sign in / Sign up

Export Citation Format

Share Document