scholarly journals Acting via a Cell Surface Receptor, Thyroid Hormone Is a Growth Factor for Glioma Cells

2006 ◽  
Vol 66 (14) ◽  
pp. 7270-7275 ◽  
Author(s):  
Faith B. Davis ◽  
Heng-Yuan Tang ◽  
Ai Shih ◽  
Travis Keating ◽  
Lawrence Lansing ◽  
...  
Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2864-2871 ◽  
Author(s):  
Joel J. Bergh ◽  
Hung-Yun Lin ◽  
Lawrence Lansing ◽  
Seema N. Mohamed ◽  
Faith B. Davis ◽  
...  

Abstract Integrin αVβ3 is a heterodimeric plasma membrane protein whose several extracellular matrix protein ligands contain an RGD recognition sequence. This study identifies integrin αVβ3 as a cell surface receptor for thyroid hormone [l-T4 (T4)] and as the initiation site for T4-induced activation of intracellular signaling cascades. Integrin αVβ3 dissociably binds radiolabeled T4 with high affinity, and this binding is displaced by tetraiodothyroacetic acid, αVβ3 antibodies, and an integrin RGD recognition site peptide. CV-1 cells lack nuclear thyroid hormone receptor, but express plasma membrane αVβ3; treatment of these cells with physiological concentrations of T4 activates the MAPK pathway, an effect inhibited by tetraiodothyroacetic acid, RGD peptide, and αVβ3 antibodies. Inhibitors of T4 binding to the integrin also block the MAPK-mediated proangiogenic action of T4. T4-induced phosphorylation of MAPK is inhibited by small interfering RNA knockdown of αV and β3. These findings suggest that T4 binds to αVβ3 near the RGD recognition site and show that hormone-binding to αVβ3 has physiological consequences.


1977 ◽  
Vol 74 (7) ◽  
pp. 2790-2794 ◽  
Author(s):  
M. Das ◽  
T. Miyakawa ◽  
C. F. Fox ◽  
R. M. Pruss ◽  
A. Aharonov ◽  
...  

2009 ◽  
Vol 20 (8) ◽  
pp. 1569-1577 ◽  
Author(s):  
Cyril Boucher ◽  
Benoît Liberelle ◽  
Mario Jolicoeur ◽  
Yves Durocher ◽  
Gregory De Crescenzo

2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1453-P1454
Author(s):  
Nicola J. Corbett ◽  
Kate Fisher ◽  
Helen A. Rowland ◽  
Alys C. Jones ◽  
Nigel M. Hooper

2008 ◽  
Vol 20 (9) ◽  
pp. 30
Author(s):  
M. Gamat ◽  
M. B. Renfree ◽  
A. J. Pask ◽  
G. Shaw

Androgens induce the differentiation of the urogenital sinus (UGS) to form a prostate. An early marker of this response is upregulation of the transcription factor Nkx3.1 in the urogenital epithelium in the precursors of prostatic buds. In tammars, prostate differentiation begins ~3 weeks after birth and after the time the testis starts to secrete androgens, and 2 weeks after androgen stimulated Wolffian duct differentiation. The reason for this delay in prostate differentiation is unexplained. Androgen receptors are present in the UGS, and the potent androgen, androstanediol, induces prostatic development in females. Whilst androgens may diffuse into cells by across the cell membrane, there is increasing evidence that steroids are also internalised actively via the cell-surface transport molecule Megalin. We are exploring the possibility that the delay may be related to the establishment of a Megalin-mediated pathway. Megalin is a cell surface receptor expressed on epithelia and mediates the endocytosis of a wide range of ligands, including SHBG-bound sex steroids. Megalin action is regulated by Receptor Associated Protein (RAP), which acts as an antagonist to Megalin action. This study cloned partial sequences of Megalin, RAP and Nkx3.1 and examined their expression in the developing urogenital sinus of the tammar wallaby using RT–PCR. The cellular distribution of Megalin protein in the developing UGS was examined using immunohistochemistry. Megalin, RAP and Nkx3.1 in the tammar were all highly conserved with eutherian orthologueues. Megalin and Nkx3.1 transcripts were detected in the liver, kidney, ovary, testis and developing urogenital sinus of male and female tammars. In the developing UGS of the tammar, there was strong staining for Megalin protein in the urogenital epithelium with some diffuse staining in the surrounding mesenchyme. Together, these results suggest that Megalin could be a key gene in the mediation of androgen action in prostatic development in the tammar wallaby.


1986 ◽  
Vol 51 (0) ◽  
pp. 703-711 ◽  
Author(s):  
J.S. McDougal ◽  
P.J. Maddon ◽  
A.G. Dalgleish ◽  
P.R. Clapham ◽  
D.R. Littman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document