Targeted therapies for triple negative breast cancer based on TP53 status.

Author(s):  
CX Ma ◽  
S Li ◽  
Z Guo ◽  
RE Chris ◽  
J Hoog ◽  
...  
2011 ◽  
Vol 121 (7) ◽  
pp. 2750-2767 ◽  
Author(s):  
Brian D. Lehmann ◽  
Joshua A. Bauer ◽  
Xi Chen ◽  
Melinda E. Sanders ◽  
A. Bapsi Chakravarthy ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


Nanomedicine ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 981-1000
Author(s):  
C Ethan Byrne ◽  
Carlos E Astete ◽  
Manibarathi Vaithiyanathan ◽  
Adam T Melvin ◽  
Mahsa Moradipour ◽  
...  

Aim: Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic- co-glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies. Materials & methods: L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested in vitro on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs. Results: Loaded L-PLGA NPs were less than half the size of PLGA NPs, had slower drug release and improved the efficacy of GDC-0623 when tested in vitro. We demonstrated that GDC-0623 reversed epithelial-to-mesenchymal transition in TNBC. Conclusion: Our findings indicate that L-PLGA NPs are superior to PLGA NPs in delivering GDC-0623 to cancer cells for improved efficacy in vitro.


2012 ◽  
Vol 23 ◽  
pp. vi56-vi65 ◽  
Author(s):  
J. Crown ◽  
J. O'Shaughnessy ◽  
G. Gullo

Breast Care ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Frederik Marmé ◽  
Andreas Schneeweiss

Triple-negative breast cancer (TNBC) is a heterogeneous disease comprised of several biologically distinct subtypes. However, treatment is currently mainly relying on chemotherapy as there are no targeted therapies specifically approved for TNBC. Despite initial responses to chemotherapy, resistance frequently and rapidly develops and metastatic TNBC has a poor prognosis. New targeted approaches are, therefore, urgently needed. Currently, bevacizumab, a monoclonal anti-vascular endothelial growth factor (VEGF)-A antibody, is the only targeted agent with an approval for the therapy of metastatic breast cancer, but does not provide a specific benefit in the TNBC subtype. This review discusses the current clinical developments in targeted approaches for TNBC, including anti-angiogenic therapies, epidermal growth factor receptor (EGFR)-targeted therapies, poly(ADP-ribose) polymerase (PARP) inhibitors and platinum salts, as well as novel strategies using immune-checkpoint inhibitors, which have recently demonstrated first promising results. Strategies focusing on specific subtypes of TNBC like anti-androgenic therapies for the luminal androgen receptor subtype (LAR) and others are also discussed.


Sign in / Sign up

Export Citation Format

Share Document