P1-02-03: The Reciprocal Roles of E-Cadherin and ZEB1 Demonstrate the Mesenchymal-Epithelial Transition as a Primary Characteristic of Inflammatory Breast Cancer.

Author(s):  
K Chu ◽  
KM Boley ◽  
AZ Luo ◽  
Z Ye ◽  
MC Wright ◽  
...  
2006 ◽  
Vol 133 (2) ◽  
pp. 83-92 ◽  
Author(s):  
Hui-Ming Dong ◽  
Gang Liu ◽  
Yi-Feng Hou ◽  
Jiong Wu ◽  
Jin-Song Lu ◽  
...  

2020 ◽  
Author(s):  
Lindy J Pence ◽  
Antonis Kourtidis ◽  
Ryan W. Feathers ◽  
Mary T. Haddad ◽  
Sotiris Sotiriou ◽  
...  

Abstract Background: Inflammatory breast cancer is a highly aggressive form of breast cancer that robustly forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. Inflammatory breast cancers express high levels of E-cadherin, the major protein of adherens junctions, which may enhance the ability of tumor cells to form such clusters and contribute to metastasis. Seemingly contradictory, E-cadherin has both tumor-suppressing and tumor-promoting roles in cancer; previous studies suggest that this depends on the balance between apical and basolateral cadherin-catenin complexes. Methods: In the present study, we use immunohistochemistry of inflammatory breast cancer patient samples and biochemical analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We use viral transduction to ectopically express PLEKHA7 in the SUM149 inflammatory breast cancer cell line. The effect of PLEKHA7 on the aggressiveness of inflammatory breast cancer in 2D, 3D and in-vivo were examined. Results: We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in a strong majority of patient samples and very low expression in cell line models. We found that re-expressing PLEKHA7 is sufficient to suppress proliferation, anchorage independent growth, spheroid viability, and tumor growth in-vivo. We also observed a negative-selection pressure within the xenograft tumors to lose PLEKHA7 function or expression.Conclusions: The data indicate that PLEKHA7 is frequently deregulated and acts as a suppressor of inflammatory breast cancer. They also suggest that the resulting imbalance between apical and basolateral cadherin-catenin complexes contributes to growth, survival and emboli-forming capacities of inflammatory breast cancer.


2021 ◽  
Vol 22 (3) ◽  
pp. 1275
Author(s):  
Lindy J. Pence ◽  
Antonis Kourtidis ◽  
Ryan W. Feathers ◽  
Mary T. Haddad ◽  
Sotiris Sotiriou ◽  
...  

Inflammatory breast cancer is a highly aggressive form of breast cancer that forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. These cancers express high levels of E-cadherin, the major mediator of adherens junctions, which enhances formation of tumor emboli. Previous studies suggest that E-cadherin promotes cancer when the balance between apical and basolateral cadherin complexes is disrupted. Here, we used immunohistochemistry of inflammatory breast cancer patient samples and analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We used viral transduction to re-express PLEKHA7 in inflammatory breast cancer cells and examined their aggressiveness in 2D and 3D cultures and in vivo. We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in most patient samples and very low expression in cell lines. Re-expressing PLEKHA7 suppressed proliferation, anchorage independent growth, spheroid viability, and tumor growth in vivo. The data indicate that PLEKHA7 is frequently deregulated and acts to suppress inflammatory breast cancer. The data also promote the need for future inquiry into the imbalance between apical and basolateral cadherin complexes as driving forces in inflammatory breast cancer.


2003 ◽  
Vol 88 (5) ◽  
pp. 718-725 ◽  
Author(s):  
C G Colpaert ◽  
P B Vermeulen ◽  
I Benoy ◽  
A Soubry ◽  
F Van Roy ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoding Hu ◽  
Emilly S. Villodre ◽  
Richard Larson ◽  
Omar M. Rahal ◽  
Xiaoping Wang ◽  
...  

AbstractInflammatory breast cancer (IBC) is a clinically distinct and highly aggressive form of breast cancer with rapid onset and a strong propensity to metastasize. The molecular mechanisms underlying the aggressiveness and metastatic propensity of IBC are largely unknown. Herein, we report that decorin (DCN), a small leucine-rich extracellular matrix proteoglycan, is downregulated in tumors from patients with IBC. Overexpression of DCN in IBC cells markedly decreased migration, invasion, and cancer stem cells in vitro and inhibited tumor growth and metastasis in IBC xenograft mouse models. Mechanistically, DCN functioned as a suppressor of invasion and tumor growth in IBC by destabilizing E-cadherin and inhibiting EGFR/ERK signaling. DCN physically binds E-cadherin in IBC cells and accelerates its degradation through an autophagy-linked lysosomal pathway. We established that DCN inhibits tumorigenesis and metastasis in IBC cells by negatively regulating the E-cadherin/EGFR/ERK axis. Our findings offer a potential therapeutic strategy for IBC, and provide a novel mechanism for IBC pathobiology.


Sign in / Sign up

Export Citation Format

Share Document