Abstract 1556: Regulation of cellular apoptosis via a novel protein-protein interaction of tumor suppressor p53 with the xenobiotic pregnane X receptor (PXR) in colon cancer cells

Author(s):  
Delira F. Robbins ◽  
Jing Wu ◽  
Taosheng Chen
2004 ◽  
Vol 25 (9) ◽  
pp. 1611-1617 ◽  
Author(s):  
Philip J. Moos ◽  
Kornelia Edes ◽  
James E. Mullally ◽  
Frank A. Fitzpatrick

2000 ◽  
Vol 6 (8) ◽  
pp. 693-704 ◽  
Author(s):  
Julius Halaschek-Wiener ◽  
Volker Wacheck ◽  
Hermine Schlagbauer-Wadl ◽  
Klaus Wolff ◽  
Yoel Kloog ◽  
...  

2014 ◽  
Vol 54 (11) ◽  
pp. 1430-1441 ◽  
Author(s):  
M. Carmen Figueroa-Aldariz ◽  
M. Cristina Castañeda-Patlán ◽  
Paula Santoyo-Ramos ◽  
Alejandro Zentella ◽  
Martha Robles-Flores

2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 469-469
Author(s):  
Yanxin Luo ◽  
Andrew Kaz ◽  
Samornmas Kanngurn ◽  
William M. Grady

469 Background: Neurotrophin tyrosine kinase receptor 3 (NTRK3) is a receptor tyrosine kinase that has been shown to be an oncogene in breast cancer and possibly in hepatocellular carcinoma. NTRK3 is a trophic dependence receptor, which is a recently described class of receptors that initiate signaling in both the ligand bound and unbound states. Through a genome-wide screen for aberrantly methylated genes, we identified aberrantly methylated NTRK3 as a frequently methylated gene in colon cancer. The aim for the present study is to determine if NTRK3 is an epigenetically silenced tumor suppressor gene in colorectal cancer. Methods: NTRK3 promoter methylation was analyzed in human colon cancer cell lines, normal colon epithelium tissue, colorectal adenomas and colorectal cancers using quantitative methylation-specific PCR and bisulfite sequencing. NTRK3 mRNA and protein expression were studied using quantitative real-time PCR, immunohistochemistry and western blotting respectively. The tumor suppressor function of NTRK3 was examined by assessing the effect of NTRK3 on cell apoptosis, cell migration and in vitro colony formation assays in colon cancer cell lines stably transfected with an NTRK3 expression construct in the presence or absence of NT-3. Results: NTRK3 is methylated in 60% of colon adenomas and in 57% of colorectal cancers. The aberrant methylation of NTRK3 suppresses NTRK3 expression and releases colon cancer cells from NTRK3 mediated apoptosis induced by the expression of NTRK3 in the absence of the ligand NT-3 via the activation of MAPK/ERK pathway. Methylation of NTRK3 also releases colon cancer cells from NTRK3 mediated suppression of motility and anchorage independent growth. The addition of NT3 to colon cancer cells transfected with NTRK3 inhibits the tumor suppressor effects of NTRK3. Conclusions: The aberrant methylation of NTRK3 is likely functionally relevant for colorectal cancer formation as NTRK3 appears to be a conditional tumor suppressor gene in the colon depending on the expression status of its ligand NT-3. NTRK3 is a novel aberrantly methylated conditional tumor suppressor gene that is frequently methylated in colon adenomas and cancers and whose discovery reveals possible novel treatment approaches to colon cancer.


2012 ◽  
Vol 23 (11) ◽  
pp. 2041-2056 ◽  
Author(s):  
David M. Roberts ◽  
Mira I. Pronobis ◽  
John S. Poulton ◽  
Eric G. Kane ◽  
Mark Peifer

Wnt signaling plays key roles in development and disease. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling. Its best-characterized role is as part of the destruction complex, targeting the Wnt effector β-catenin (βcat) for phosphorylation and ultimate destruction, but several studies suggested APC also may act in the nucleus at promoters of Wnt-responsive genes or to shuttle βcat out for destruction. Even in its role in the destruction complex, APC's mechanism of action remains mysterious. We have suggested APC positions the destruction complex at the appropriate subcellular location, facilitating βcat destruction. In this study, we directly tested APC's proposed roles in the nucleus or in precisely localizing the destruction complex by generating a series of APC2 variants to which we added tags relocalizing otherwise wild-type APC to different cytoplasmic locations. We tested these for function in human colon cancer cells and Drosophila embryos. Strikingly, all rescue Wnt regulation and down-regulate Wnt target genes in colon cancer cells, and most restore Wnt regulation in Drosophila embryos null for both fly APCs. These data suggest that APC2 does not have to shuttle into the nucleus or localize to a particular subcellular location to regulate Wnt signaling.


Sign in / Sign up

Export Citation Format

Share Document