Abstract 2642: Antibody-drug conjugate for human pancreatic cancer cells using anti-tissue factor monoclonal antibody

Author(s):  
Yoshikatsu Koga ◽  
Ryuta Sato ◽  
Ryo Tsumura ◽  
Hikaru Machida ◽  
Yoshiyuki Yamamoto ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Yangbing Jin ◽  
Zehui Zhang ◽  
Siyi Zou ◽  
Fanlu Li ◽  
Hao Chen ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated death in the United States and has a 5-year survival rate of <4%. Although much effort has been invested in the research and development of pancreatic cancer drugs over the past 30 years, due to the lack of effective targetable carcinogenic drivers, no new targeted therapies that can improve patient prognosis have been approved for clinical use. SHR-A1403 is a new c-mesenchymal-epithelial transition factor (c-MET) antibody-drug conjugate that can be used for the targeted treatment of PDAC with high c-MET expression. This study reports for the first time the application prospects of SHR-A1403 in preclinical models of PDAC. SHR-A1403 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells and induced cell cycle arrest and apoptosis. These changes were caused by inhibition of intracellular cholesterol biosynthesis by SHR-A1403. Therefore, targeting c-MET through SHR-A1403 showed strong preclinical anti-tumour efficacy in pancreatic cancer. Our work suggests the potential application of c-MET-targeted antibody-drug conjugate treatment for PDAC in clinical practise.


Author(s):  
Guang Wu ◽  
Lan Li ◽  
Yuxin Qiu ◽  
Wei Sun ◽  
Tianhao Ren ◽  
...  

Abstract Mucin 1 (MUC1) has been regarded as an ideal target for cancer treatment, since it is overexpressed in a variety of different cancers including the majority of breast cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1. In this study, we generated a humanized MUC1 (HzMUC1) antibody from our previously developed MUC1 mouse monoclonal antibody that only recognizes MUC1 on the surface of tumor cells. Furthermore, an antibody–drug conjugate (ADC) was generated by conjugating HzMUC1 with monomethyl auristatin (MMAE), and the efficacy of HzMUC1-MMAE on the MUC1-positive HER2+ breast cancer in vitro and in ‘Xenograft’ model was tested. Results from western blot analysis and immunoprecipitation revealed that the HzMUC1 antibody did not recognize cell-free MUC1-N in sera from breast cancer patients. Confocal microscopy analysis showed that HzMUC1 antibody bound to MUC1 on the surface of breast cancer cells. Results from mapping experiments suggested that HzMUC1 may recognize an epitope present in the interaction region between MUC1-N and MUC1-C. Results from colony formation assay and flow cytometry demonstrated that HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in trastuzumab-resistant HER2-positive breast cancer cells. Meanwhile, HzMUC1-MMAE significantly reduced the growth of HCC1954 xenograft tumors by inhibiting cell proliferation and enhancing cell death. In conclusion, our results indicate that HzMUC1-ADC is a novel therapeutic drug that can overcome trastuzumab resistance of breast cancer. HzMUC1-ADC should also be an effective therapeutic drug for the treatment of different MUC1-positive cancers in clinic.


2012 ◽  
Vol 129 (6) ◽  
pp. 779-786 ◽  
Author(s):  
Grigoris T. Gerotziafas ◽  
Vassiliki Galea ◽  
Elisabeth Mbemba ◽  
Amir Khaterchi ◽  
Mouna Sassi ◽  
...  

2020 ◽  
Vol 45 (1) ◽  
pp. 329-336
Author(s):  
Ryo Tsumura ◽  
Takahiro Anzai ◽  
Shino Manabe ◽  
Hiroki Takashima ◽  
Yoshikatsu Koga ◽  
...  

2018 ◽  
Vol 18 (13) ◽  
pp. 1091-1109 ◽  
Author(s):  
Rita Melo ◽  
Agostinho Lemos ◽  
Antonio J. Preto ◽  
Jose G. Almeida ◽  
Joao D.G. Correia ◽  
...  

Cancer has become one of the main leading causes of morbidity and mortality worldwide. One of the critical drawbacks of current cancer therapeutics has been the lack of the target-selectivity, as these drugs should have an effect exclusively on cancer cells while not perturbing healthy ones. In addition, their mechanism of action should be sufficiently fast to avoid the invasion of neighbouring healthy tissues by cancer cells. The use of conventional chemotherapeutic agents and other traditional therapies, such as surgery and radiotherapy, leads to off-target interactions with serious side effects. In this respect, recently developed target-selective Antibody-Drug Conjugates (ADCs) are more effective than traditional therapies, presumably due to their modular structures that combine many chemical properties simultaneously. In particular, ADCs are made up of three different units: a highly selective Monoclonal antibody (Mab) which is developed against a tumour-associated antigen, the payload (cytotoxic agent), and the linker. The latter should be stable in circulation while allowing the release of the cytotoxic agent in target cells. The modular nature of these drugs provides a platform to manipulate and improve selectivity and the toxicity of these molecules independently from each other. This in turn leads to generation of second- and third-generation ADCs, which have been more effective than the previous ones in terms of either selectivity or toxicity or both. Development of ADCs with improved efficacy requires knowledge at the atomic level regarding the structure and dynamics of the molecule. As such, we reviewed all the most recent computational methods used to attain all-atom description of the structure, energetics and dynamics of these systems. In particular, this includes homology modelling, molecular docking and refinement, atomistic and coarse-grained molecular dynamics simulations, principal component and cross-correlation analysis. The full characterization of the structure-activity relationship devoted to ADCs is critical for antibody-drug conjugate research and development.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document