Abstract A14: Chromosomal aberrations predict malignant progression and treatment response of Barrett's‐related esophageal neoplasia: A genome‐wide high‐density SNP array analysis

Author(s):  
Jian Gu ◽  
Jaffer A. Ajani ◽  
Ernest Hawk ◽  
Yuanqing Ye ◽  
Kenneth K. Wang ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3326-3333 ◽  
Author(s):  
Gabrielle S. Sellick ◽  
Lynn R. Goldin ◽  
Ruth W. Wild ◽  
Susan L. Slager ◽  
Laura Ressenti ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders display familial aggregation. To identify a susceptibility gene for CLL, we assembled families from the major European (ICLLC) and American (GEC) consortia to conduct a genome-wide linkage analysis of 101 new CLL pedigrees using a high-density single nucleotide polymorphism (SNP) array and combined the results with data from our previously reported analysis of 105 families. Here, we report on the combined analysis of the 206 families. Multipoint linkage analyses were undertaken using both nonparametric (model-free) and parametric (model-based) methods. After the removal of high linkage disequilibrium SNPs, we obtained a maximum nonparametric linkage (NPL) score of 3.02 (P = .001) on chromosome 2q21.2. The same genomic position also yielded the highest multipoint heterogeneity LOD (HLOD) score under a common recessive model of disease susceptibility (HLOD = 3.11; P = 7.7 × 10−5), which was significant at the genome-wide level. In addition, 2 other chromosomal positions, 6p22.1 (corresponding to the major histocompatibility locus) and 18q21.1, displayed HLOD scores higher than 2.1 (P < .002). None of the regions coincided with areas of common chromosomal abnormalities frequently observed in CLL. These findings provide direct evidence for Mendelian predisposition to CLL and evidence for the location of disease loci.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1061-1061
Author(s):  
Laura Mosca ◽  
Sonia Fabris ◽  
Giovanna Cutrona ◽  
Luca Agnelli ◽  
Serena Matis ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is a genetically heterogeneous disease with a variable clinical course. Chromosomal changes have been identified by FISH in approximately 80% of patients, and the presence of specific lesions, such as trisomy 12 and 13q14, 11q23, 17p13.1 and 6q23 deletions represent prognostic markers for disease progression and survival. In order to characterize further the complexity of B-CLL genomic lesions, we performed high density, single nucleotide polymorphism (SNP) array analysis in highly purified neoplastic cells (&gt;92%) from a panel of 100 untreated, newly diagnosed patients (57 males and 43 females; age, median 63 years, range 30–87) in Binet stage A. All patients were investigated by FISH for the presence of trisomy 12 (21 cases); 13q14 deletion (44 cases, 34 as the sole abnormality); 11q22.3, 17p13.1 and 6q23 (15, 7 and 2 patients, respectively). In addition, ZAP-70 and CD38 expression resulted positive in 42 and 46 patients, whereas IgVH genes were mutated in 45 patients. Genome-wide DNA profiling data were generated on GeneChip® Human Mapping 250K NspI arrays (Affymetrix); copy number alterations (CNA) were calculated using the DNA copy Bioconductor package, which looks for optimal breakpoints using circular binary segmentation (CBS) (Olshen et al, 2004). A total of 782 CNAs (ranging from 1 to 31 per sample, mean and median values 7.82 and 7, respectively) were detected; DNA losses (365/782=46.67% loss; 194/782=24.81% biallelic deletion) were found to be more frequent than gains (148/782=18.93% gain; 75/782=9.59% amplification). The most recurrent alterations detected by FISH were all confirmed by SNP array analysis, strengthening further the good reliability of such high-resolution technology. We identified 12 minimally altered regions (MARs) larger than 100 kb with a frequency higher than 5%. Among well known alterations, the largest was represented by chromosome 12 trisomy, followed by 6q, 17p and 11q23 deletions (32.87, 19.09 and 10.43 Mb, respectively) and 13q14 deletion (635 kb). Gain of 2p25.3 involves a common region of 4.39 Mb region in 7 patients, although it was extended to the whole short arm of chromosome 2 in 3 cases. Among those alterations previously described in B-CLL, we found losses at 14q32.33 (12 pts) and 22q11.2 (5 pts) involving the IGH and IGLλ loci, respectively. With regard to novel regions, we identified losses at 4q35.2 (5 pts) and 11q25 (6 pts). In addition we found a high frequency of losses/gains at 14q11.2 (42 pts) and 15q11.2 (33 pts), two genomic regions reported to be affected by DNA copy number variations in normal individuals. As regards correlations between CNAs and biological markers, we found that the number of CNAs is significantly higher in cases with unmutated IgVH (9.4; range 2–31) as compared with mutated IgVH (6; range 1–13) (p=0.002), while neither CD38 nor ZAP-70 expression showed significant correlation. In addition, a significant higher number of either CNAs (p=0.001), total MARs (p&lt;0.0001) or even only novel MARs (p=0.009) was significantly associated with cases with 17p deletion or multiple cytogenetic aberrations as evaluated by FISH analysis. Our data indicate that genetic abnormalities involving chromosomal gains and losses are very common in early-stage B-CLL and further support the application of high resolution SNP array platforms in the characterization of genetic changes in the disease. In addition, we detected novel altered chromosomal regions that warrant further investigations to better define their pathogenetic and prognostic role in B-CLL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3182-3182
Author(s):  
Daniel Nowak ◽  
Norihiko Kawamata ◽  
Tadayuki Akagi ◽  
Ryoko Okamoto ◽  
Nils Thoennissen ◽  
...  

Abstract Despite the success story of tyrosine kinase inhibitors (TKIs) for the treatment of Chronic Myeloid Leukemia (CML), patients can develop resistances against the drugs. The main known causes for resistance are mutations or over-expression of the BCR/ABL fusion protein, reduced bioavailability of the drugs and activation of compensatory molecular pathways. It is hypothesized that during disease progression, genomic instability of CML cells increases, which may lead to new genomic lesions harboring additional mechanisms of resistance. In this context, we studied genomic DNA profiles of 32 Imatinib resistant CML patients with high density 250K SNP arrays (Affymetrix). Molecular allelokaryotyping for allele specific copy number and loss of heterozygosity analysis was performed with the CNAG software. Single DNA samples from 27 patients were extracted after they had acquired resistance to Imatinib or alternative TKIs such as Nilotinib or Dasatinib. DNA from 12 patients could be analyzed in sequential samples from the initial diagnosis timepoint and a second timepoint upon the emergence of TKI resistance. All patients were positive for BCR/ABL by PCR and FISH. 10 relapse patient samples had known BCR/ABL mutations of which two were T315I mutations. High density allelokaryotyping confirmed pre-existent data on unbalanced translocations, amplifications and deletions from routine cytogenetics: 5 samples displayed a genomic duplication of the BCR/ABL fusion gene, 4 samples had trisomy 8, 1 sample showed deletion of chromosome 17p, 1 sample had heterozygous deletion of chromosome 9. Apart from this, SNP array analysis revealed numerous new submicroscopic genomic lesions. After exclusion of genomic copy number polymorphisms (CNPs) by comparison to recorded CNPs in the UCSC Genome Browser (http://genome.ucsc.edu/) the following results were obtained: Two patients displayed common heterozygous microdeletions of the reciprocal ABL/BCR fusion product. Furthermore, single samples displayed heterozygous micro-deletions on chromosomes 1, 2, 10, 12, 15, 17, and 22 or microduplications on chromosomes 2,3,6, 8, 9, 11, 12, 14, 15, 22. The affected regions contained potentially interesting genes in respect to resistance to therapy such as tumor suppressor candidate MBP-1, apoptosis related protein RERE, metastasis associated gene MTA3, nuclear body associated gene SP100, alpha-T-catenin (CTNNA3), Cbl-interacting protein Sts-1 and the DNA repair associated gene RAD51. As a new genomic alteration in CML, we detected acquired uniparental disomy (UPD) in 5 samples with a common site of UPD on chromosome 19q in 2 patients. In conclusion, in 14 out of 39 TKI resistant cases, high density SNP arrays enabled us to identify submicroscopic copy number lesions and regions of UPD containing promising candidate genes, which merit further research as sites conferring TKI resistance.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2721-2721
Author(s):  
Daniel Nowak ◽  
Marion Klaumuenzer ◽  
Benjamin Hanfstein ◽  
Maximilian Mossner ◽  
Florian Nolte ◽  
...  

Abstract Abstract 2721 Introduction: Acute Promyelocytic Leukemia (APL) is characterized by the typical chromosomal translocation t(15;17)(q22;q21) leading to the fusion product PML-RARA, which blocks granulocytic differentiation in the promyelocyte stage. Several experimental in vitro and in vivo studies have demonstrated that PML-RARA is necessary but not sufficient for the generation of APL. This circumstance has motivated the search for additional leukemogenic and cooperating molecular lesions. Patients and Methods: We have analyzed 101 APL patient bone marrow samples with high density Genome-Wide Human SNP 6.0 arrays, which interrogate >900.000 SNPs and >900.000 non-polymorphic copy number markers throughout the genome (Affymetrix, Santa Clara, CA, USA) in search for copy number alterations (CNAs) potentially relevant in the pathogenesis of APL. Genomic DNA from samples at initial diagnosis of 94 patients was analyzed. Furthermore, DNA from 11 samples at relapse was available, whereby 4 of these relapse samples also had paired DNA from initial diagnosis. Data analysis was carried out with the CNAG 3.3 software using anonymous references. For exclusion of copy number polymorphisms, all detected CNAs were compared with the databases of known copy number polymorphisms in the UCSC genome browser. For data validation, putatively acquired CNAs and regions of copy number neutral loss of heterozygosity (CNLOH) were confirmed by hybridization of DNA from paired normal samples when the patients were in remission, by quantitative real time PCR of genomic DNA and by direct sequencing of informative SNPs. Results: The high density SNP array analysis detected a total of 120 heterozygous deletions, 97 duplications or amplifications and 7 regions of telomeric CNLOH leading to an average of 2.3 CNAs per sample (range 0–30). The most common numerical and large structural aberrations were found on chromosome (chr.) 8 with either trisomy 8 (n=11) or duplication of regions on chr. 8q (n=10) followed by heterozygous deletions of chr. 7q (n=5) and chr. 16q (n=5). Furthermore, unbalanced translocations of chr. 15 and 17 involving PML and RARalpha were detected in five cases leading to duplication of the PML-RARA fusion or deletion of genomic regions flanking either PML or RARalpha. Recurrent microlesions (<1Mbp) were found in several regions as heterozygous deletions on chr. 1q31.3 containing the micro RNAs MIR181B1 and MIR181A1 (n=5), on chr. 2q32.3 containing serine/threonine kinase 17b (STK17B) (n=5) or chr. 3p24.3 containing ankyrin repeat domain 28 (ANKRD28) (n=5). One recurrent region of telomeric CNLOH was found on chr. 19q in two samples. Of note, besides the few regions of telomeric CNLOH a large number of intrachromosomal CNLOH regions (n=265) was identified, with recurrent regions on chr. 6p21.1 (n=10) or chr. 5q23.3-5q31.1 (n=6) containing genes relevant in hematopoiesis such as IL3, CSF2 or DNA damage repair such as RAD50. Although these CNLOH regions were not somatically acquired they may possibly harbor genetic predispositions for disease. Conclusions: We describe a detailed high density SNP array genomic profiling of bone marrow DNA from patients with APL, which has led to the identification of several new cryptic recurrent genomic lesions. These genomic alterations point to candidate genes, which could be cooperating factors in addition to PML-RARA. Therefore, our data helps to provide a better understanding of the molecular mechanisms underlying the development of APL. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Lengfelder:Cephalon: Research Funding.


2019 ◽  
Vol 17 (7) ◽  
pp. 1418-1430 ◽  
Author(s):  
Virginie Merot‐L'anthoene ◽  
Rémi Tournebize ◽  
Olivier Darracq ◽  
Vimel Rattina ◽  
Maud Lepelley ◽  
...  

2008 ◽  
Vol 26 (15_suppl) ◽  
pp. 8522-8522 ◽  
Author(s):  
H. Avet-Loiseau ◽  
N. Munshi ◽  
C. LI ◽  
F. Magrangeas ◽  
W. Gouraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document