scholarly journals Cell line authentication to improve preclinical cancer research: Methods in cell line authentication, quality control, and annotation

2015 ◽  
Vol 2015 (1) ◽  
pp. 99-104
Author(s):  
S. P. Ethier ◽  
R. M. Neve
Nature ◽  
2015 ◽  
Vol 520 (7547) ◽  
pp. 307-311 ◽  
Author(s):  
Mamie Yu ◽  
Suresh K. Selvaraj ◽  
May M. Y. Liang-Chu ◽  
Sahar Aghajani ◽  
Matthew Busse ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 251-260
Author(s):  
M. D. Khorolsky ◽  
I. S. Semenova ◽  
E. V. Melnikova ◽  
Yu. V. Olefir

Short tandem repeat analysis (STR) is a well-established international method of authentication and genetic stability testing of cell lines (CLs). Therefore, the development and introduction of this method into routine practice of cell banks and cell culture collections is a pressing concern. In addition, the expansion of the field of cell-line based biomedical cell products (BСPs) necessitates the implementation of STR as a tool of identification testing during quality control. The State Pharmacopoeia of the Russian Federation does not require mandatory use of STR for cell line identification, while other countries have been using this method for cell line quality control for about a decade. The use of identified CLs in medical practice will ensure the efficacy and safety of BCPs.The aim of the study was to assess the possibility of using STR analysis for authentication and genetic stability testing of CLs using U937, WISH, WIL2-S, NK-92, and Jurkat Clone E6-1 CLs as examples.Materials and me­thods: the following human CLs were used in the study: U937 (ECACC), WISH (ATCC), WIL2S (ATCC), NK-92 (ATCC), and Jurkat Clone E6-1 (ATCC). The CL allelic profiles were determined by STR using the COrDIS Plus kit (Gordiz, Russia). The electrophoretic separation was performed using a Genetic Analyzer 3500 Series instrument. The data provided on the websites of the European Collection of Authenticated Cell Cultures and American Type Culture Collection were used to compare the CL profiles.Results: the AuthentiFiler PCR Amplification Kit (Thermo Fisher Scientific, USA) and the GenePrint 10 System (Promega Corporation, USA) intended for CL authentication by STR were compared with the characteristics of the COrDIS plus kit (Gordiz, Russia). The results of the comparison demonstrated that the COrDIS plus kit includes all the loci found in the foreign kits, as well as the loci recommended by the International Cell Line Authentication Committee. The U-937, WIL2S, and NK-92 CLs demonstrated genetic identity with the reference profiles available on the websites of the international collections. The Jurkat Clone E6-1 CL was found to be genetically instable due to the loss of the amelogenin gene.Conclusions: it was demonstrated by the examples of U937, WISH, WIL2-S, NK-92, and Jurkat Clone E6-1 CLs that STR and the COrDIS plus kit could be used for authentication and genetic stability testing. The obtained results suggest the feasibility of using the COrDIS plus kit for the analysis of CLs used in BCPs, for BCP quality control, and biomedical research.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Zeljana Babic ◽  
Amanda Capes-Davis ◽  
Maryann E Martone ◽  
Amos Bairoch ◽  
I Burak Ozyurt ◽  
...  

The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Andre Kleensang ◽  
Marguerite M. Vantangoli ◽  
Shelly Odwin-DaCosta ◽  
Melvin E. Andersen ◽  
Kim Boekelheide ◽  
...  

Abstract Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines.


Sign in / Sign up

Export Citation Format

Share Document