Combination Treatment of Influenza A Virus Infections in Cell Culture and in Mice with the Cyclopentane Neuraminidase Inhibitor RWJ-270201 and Ribavirin

Chemotherapy ◽  
2002 ◽  
Vol 48 (2) ◽  
pp. 88-93 ◽  
Author(s):  
Donald F. Smee ◽  
Kevin W. Bailey ◽  
Ann C. Morrison ◽  
Robert W. Sidwell
2017 ◽  
Vol 13 (1) ◽  
pp. 1-11
Author(s):  
Gabriela Żaroffe ◽  
Jacek Leluk ◽  
Agata Żyźniewska ◽  
Rafał Filip

AbstractInfluenza viruses are significant human respiratory pathogens that cause infections and unpredictable pandemic outbreaks. M2 ion-channel protein, participating in the transmission of viral genetic materials into infected cells, is considered to be the crucial target for old-generation drugs such as rimantadine and amantadine. Neuraminidase protein, which is responsible for the replication of the influenza virus, is affected by the new generation of drugs, including oseltamivir (Tamiflu) and zanamivir (Relenza). The virus mutations that cause oseltamivir resistance are also described. This review presents the details concerning the treatment of influenza neuraminidase inhibitors against the H5N1 strain. It also describes virus mutations that cause resistance to oseltamivir and presents a new drug, peramivir, which is a neuraminidase inhibitor that was introduced against the H1N1 epidemic. This work specifies the details of the pharmacokinetics, dosing, toxicity, side effects, and efficiency of the drugs being used against influenza A virus infections.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Rufeng Lu ◽  
Yueguo Wu ◽  
Honggang Guo ◽  
Zhuoyi Zhang ◽  
Yuzhou He

Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.


2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2001 ◽  
Vol 45 (3) ◽  
pp. 749-757 ◽  
Author(s):  
Robert W. Sidwell ◽  
Donald F. Smee ◽  
John H. Huffman ◽  
Dale L. Barnard ◽  
Kevin W. Bailey ◽  
...  

ABSTRACT The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >104 cell culture 50% infective doses (CCID50)/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 101.2 CCID50/g, whereas titers from oseltamivir-treated animals were >103CCID50/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.


2021 ◽  
Author(s):  
Jing Wu ◽  
Jiaqi Gu ◽  
Li Shen ◽  
Xiaonan Jia ◽  
Yiqian Yin ◽  
...  

Influenza A virus (IAV) is a crucial cause of respiratory infections in humans worldwide. Therefore, studies should clarify adaptation mechanisms of IAV and critical factors of the viral pathogenesis in human hosts. GTPases of the Rab family are the largest branch of the Ras-like small GTPase superfamily, and they regulate almost every step during vesicle-mediated trafficking. Evidence has shown that Rab proteins participate in the lifecycle of IAV. In this mini-review, we outline the regulatory mechanisms of different Rab proteins in the lifecycle of IAV. Understanding the role of Rab proteins in IAV infections is important to develop broad-spectrum host-targeted antiviral strategies.


1996 ◽  
Vol 184 (3) ◽  
pp. 1191-1196 ◽  
Author(s):  
H Sprenger ◽  
R G Meyer ◽  
A Kaufmann ◽  
D Bussfeld ◽  
E Rischkowsky ◽  
...  

It is characteristic for virus infections that monocytes/macrophages and lymphocytes infiltrate infected tissue while neutrophils are absent. To understand the mechanisms selectively attracting mononuclear cells in viral diseases, we examined in an influenza A virus model the expression and regulation of chemokines as candidate molecules responsible for the immigration of leukocytes into inflamed tissue. After influenza A virus infection of human monocytes, a rapid expression of the mononuclear cell attracting CC-chemokine genes MIP-1, MCP-1, and RANTES occurred which was followed by the release of chemokine proteins. In striking contrast to CC-chemokines, the expression of the prototype neutrophil CXC-chemoattractants IL-8 and GRO-alpha was completely suppressed after influenza A infection. The release of other neutrophil chemotactic factors was excluded by microchemotaxis assays. These results suggest that the virus-specific induction of mononuclear cell-attracting chemokines accounts for the preferential influx of mononuclear leukocytes into virus-infected tissue.


Sign in / Sign up

Export Citation Format

Share Document