The role of host cell Rab GTPases in influenza A virus infections

2021 ◽  
Author(s):  
Jing Wu ◽  
Jiaqi Gu ◽  
Li Shen ◽  
Xiaonan Jia ◽  
Yiqian Yin ◽  
...  

Influenza A virus (IAV) is a crucial cause of respiratory infections in humans worldwide. Therefore, studies should clarify adaptation mechanisms of IAV and critical factors of the viral pathogenesis in human hosts. GTPases of the Rab family are the largest branch of the Ras-like small GTPase superfamily, and they regulate almost every step during vesicle-mediated trafficking. Evidence has shown that Rab proteins participate in the lifecycle of IAV. In this mini-review, we outline the regulatory mechanisms of different Rab proteins in the lifecycle of IAV. Understanding the role of Rab proteins in IAV infections is important to develop broad-spectrum host-targeted antiviral strategies.

2018 ◽  
Vol 28 (3) ◽  
pp. 102
Author(s):  
Raghad H. Al-Azzawi

In the last years, the world has been facing pandemic influenza which caused by influenza A virus. In this study detection of influenza A virus infection in Iraqi patients was done by r RT-PCR. Three hundred eighty (380) clinical respiratory secretions samples that were collected between December and April 2013, from different hospitals and they were sent to Central Public Health Laboratory (CPHL)/National Influenza center/ Baghdad /Iraq. Among these samples, only 35 samples (22 Males and 13 females all of them were adults) gave positive results (both TS (throat swabs) and NPS (nasopharyngeal swab)) for influenza A virus (9.2%). Interleukin-6 (IL-6) and IL-1 α are pleiotropic cytokines implicated in the pathogenesis of local inflammation during viral upper respiratory infections. Cytokines levels in both NPS and TS were determined. The result appeared that there was a significant difference between IL-6 and IL-1α, but there was no significant difference between IL-6 and IL-1 α in Ts and NSP. For the first time we try to detect C-reactive protein (CRP) in nasopharyngeal swab (NPS) and throat swabs (TS) and compared with serum, also to prove that this protein may be secreted in fluids other than serum. The result showed that 64.3% of both NPS and TS were positive for CRP. This may be due to that CRP in response to microbial infection, tissue injury, and immunomodulatory stimuli are synthesized and released by various cells.


2013 ◽  
Vol 171 (1) ◽  
pp. 216-221 ◽  
Author(s):  
Rachel F. Madera ◽  
Daniel H. Libraty

2021 ◽  
Vol 22 (5) ◽  
pp. 2409
Author(s):  
Anastasia A. Bizyaeva ◽  
Dmitry A. Bunin ◽  
Valeria L. Moiseenko ◽  
Alexandra S. Gambaryan ◽  
Sonja Balk ◽  
...  

Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5′- and 3′-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385–hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.


2021 ◽  
Vol 13 (3) ◽  
pp. 363-382
Author(s):  
Mario Dioguardi ◽  
Angela Pia Cazzolla ◽  
Claudia Arena ◽  
Diego Sovereto ◽  
Giorgia Apollonia Caloro ◽  
...  

COVID-19 (Coronavirus Disease 2019) is an emerging viral disease caused by the coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to severe respiratory infections in humans. The first reports came in December 2019 from the city of Wuhan in the province of Hubei in China. It was immediately clear that children developed a milder disease than adults. The reasons for the milder course of the disease were attributed to several factors: innate immunity, difference in ACE2 (angiotensin-converting enzyme II) receptor expression, and previous infections with other common coronaviruses (CovH). This literature review aims to summarize aspects of innate immunity by focusing on the role of ACE2 expression and viral infections in children in modulating the antibody response to SARS-CoV-2 infection. This review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles deemed potentially eligible were considered, including those dealing with COVID-19 in children and providing more up-to-date and significant data in terms of epidemiology, prognosis, course, and symptoms, focusing on the etiopathogenesis of SARS-CoV-2 disease in children. The bibliographic search was conducted using the search engines PubMed and Scopus. The following search terms were entered in PubMed and Scopus: COVID-19 AND ACE2 AND Children; COVID-19 AND Immunity innate AND children. The search identified 857 records, and 18 studies were applicable based on inclusion and exclusion criteria that addressed the issues of COVID-19 concerning the role of ACE2 expression in children. The scientific literature agrees that children develop milder COVID-19 disease than adults. Milder symptomatology could be attributed to innate immunity or previous CovH virus infections, while it is not yet fully understood how the differential expression of ACE2 in children could contribute to milder disease.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Rufeng Lu ◽  
Yueguo Wu ◽  
Honggang Guo ◽  
Zhuoyi Zhang ◽  
Yuzhou He

Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.


2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2016 ◽  
Vol 8 (17) ◽  
pp. 2017-2031 ◽  
Author(s):  
Simona Panella ◽  
Maria Elena Marcocci ◽  
Ignacio Celestino ◽  
Sergio Valente ◽  
Clemens Zwergel ◽  
...  

2021 ◽  
Author(s):  
Ee-Hong Tam ◽  
Yen-Chin Liu ◽  
Chian-Huey Woung ◽  
Helene Minyi Liu ◽  
Guan-Hong Wu ◽  
...  

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in RIG-I translocation to MAVS to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-β promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-β expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49 th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C-terminus-truncated NS1 with T49A mutation dramatically increases IFN-β mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-β expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in RIG-I translocation that induces type I IFN expression, and that NS1 protein prevents RIG-I translocation to mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-β suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


1996 ◽  
Vol 184 (3) ◽  
pp. 1191-1196 ◽  
Author(s):  
H Sprenger ◽  
R G Meyer ◽  
A Kaufmann ◽  
D Bussfeld ◽  
E Rischkowsky ◽  
...  

It is characteristic for virus infections that monocytes/macrophages and lymphocytes infiltrate infected tissue while neutrophils are absent. To understand the mechanisms selectively attracting mononuclear cells in viral diseases, we examined in an influenza A virus model the expression and regulation of chemokines as candidate molecules responsible for the immigration of leukocytes into inflamed tissue. After influenza A virus infection of human monocytes, a rapid expression of the mononuclear cell attracting CC-chemokine genes MIP-1, MCP-1, and RANTES occurred which was followed by the release of chemokine proteins. In striking contrast to CC-chemokines, the expression of the prototype neutrophil CXC-chemoattractants IL-8 and GRO-alpha was completely suppressed after influenza A infection. The release of other neutrophil chemotactic factors was excluded by microchemotaxis assays. These results suggest that the virus-specific induction of mononuclear cell-attracting chemokines accounts for the preferential influx of mononuclear leukocytes into virus-infected tissue.


2012 ◽  
Vol 54 (6) ◽  
pp. 307-310 ◽  
Author(s):  
Elaine Regina Baptista Caccia ◽  
Aripuana Sakurada Aranha Watanabe ◽  
Emerson Carraro ◽  
Elcio Leal ◽  
Celso Granato ◽  
...  

BACKGROUND AND OBJECTIVES: Human Bocavirus (HBoV) has been described since 2005 as an etiological agent of respiratory virus infections. From 2001 to 2008 we investigated the etiology of HBoV among adults and children in different groups at risk of presenting complications arising from acute respiratory infection, the investigation was carried out in a tertiary hospital health care system in Brazil. METHODS: HBoV DNA was assayed in 598 respiratory samples from community and hospitalized patients by PCR. RESULTS: Of the 598 tested samples, 2.44% (8/328) of children, including five children with heart disease, and 0.4% (1/270) of adult bone-marrow-transplant were HBoV positive. CONCLUSIONS: These data suggested lower HBoV frequency among different at-risk patients and highlights the need to better understand the real role of HBoV among acute respiratory symptomatic patients.


Sign in / Sign up

Export Citation Format

Share Document