Hormonal Regulation in the Production of Macrophage Colony-Stimulating Factor and Transforming Growth Factor-Beta by Human Endometrial Stromal Cells in Culture

1995 ◽  
Vol 44 (2) ◽  
pp. 30-35 ◽  
Author(s):  
Hideharu Kanzaki ◽  
Hiroshi Hatayama ◽  
Shinji Narukawa ◽  
Masatoshi Kariya ◽  
Jun Fujita ◽  
...  
Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2130-2136 ◽  
Author(s):  
CM Chang ◽  
A Limanni ◽  
WH Baker ◽  
ME Dobson ◽  
JF Kalinich ◽  
...  

The effects of a myeloablative sublethal 775 cGy 60C gamma radiation exposure on endogenous bone marrow (BM) and splenic granulocyte- macrophage colony-stimulating factor (GM-CSF) and transforming growth factor-beta (TGF-beta) mRNA levels were assayed in B6D2F1 female mice. BM and spleen were harvested from normal mice and irradiated mice on days 2, 4, 7, 10, and 14 after exposure. Cytokine mRNA levels were determined using reverse transcription-polymerase chain reaction. After irradiation, GM-CSF mRNA levels were significantly increased in the BM from days 2 to 10 and in the spleen from days 4 to 10. However, when BM and splenic GM-CSF protein levels were measured using Western dot blot, no increased protein levels were detected. Serum GM-CSF levels were likewise unchanged. Radiation exposure did not affect BM or splenic TGF- beta mRNA levels and this cytokine is known to be produced by cell populations similar to those that produce GM-CSF. These data suggest that radiation injury to hemopoietic tissues results in differential effects on GM-CSF and TGF-beta mRNA levels and that, in the case of GM- CSF, increased mRNA levels are not matched by increased protein production.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Abstract Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


Sign in / Sign up

Export Citation Format

Share Document