scholarly journals Bone marrow and splenic granulocyte-macrophage colony-stimulating factor and transforming growth factor-beta mRNA levels in irradiated mice

Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2130-2136 ◽  
Author(s):  
CM Chang ◽  
A Limanni ◽  
WH Baker ◽  
ME Dobson ◽  
JF Kalinich ◽  
...  

The effects of a myeloablative sublethal 775 cGy 60C gamma radiation exposure on endogenous bone marrow (BM) and splenic granulocyte- macrophage colony-stimulating factor (GM-CSF) and transforming growth factor-beta (TGF-beta) mRNA levels were assayed in B6D2F1 female mice. BM and spleen were harvested from normal mice and irradiated mice on days 2, 4, 7, 10, and 14 after exposure. Cytokine mRNA levels were determined using reverse transcription-polymerase chain reaction. After irradiation, GM-CSF mRNA levels were significantly increased in the BM from days 2 to 10 and in the spleen from days 4 to 10. However, when BM and splenic GM-CSF protein levels were measured using Western dot blot, no increased protein levels were detected. Serum GM-CSF levels were likewise unchanged. Radiation exposure did not affect BM or splenic TGF- beta mRNA levels and this cytokine is known to be produced by cell populations similar to those that produce GM-CSF. These data suggest that radiation injury to hemopoietic tissues results in differential effects on GM-CSF and TGF-beta mRNA levels and that, in the case of GM- CSF, increased mRNA levels are not matched by increased protein production.

Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2239-2247 ◽  
Author(s):  
SE Jacobsen ◽  
JR Keller ◽  
FW Ruscetti ◽  
P Kondaiah ◽  
AB Roberts ◽  
...  

Abstract Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte- CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF- beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yingli Zhu ◽  
Linyuan Wang ◽  
Zhihui Yang ◽  
Jingxia Wang ◽  
Wei Li ◽  
...  

Paeonia lactifloraroot (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents ofP. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α(TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.


1994 ◽  
Vol 179 (3) ◽  
pp. 1041-1045 ◽  
Author(s):  
R Alam ◽  
P Forsythe ◽  
S Stafford ◽  
Y Fukuda

Hematopoietins, interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) have previously been shown to prolong eosinophil survival and abrogate apoptosis. The objective of this study was to investigate the effect of transforming growth factor beta (TGF-beta) on eosinophil survival and apoptosis. Eosinophils from peripheral blood of mildly eosinophilic donors were isolated to > 97% purity using discontinuous Percoll density gradient. Eosinophils were cultured with hematopoietins with or without TGF-beta for 4 d and their viability was assessed. We confirmed previous observations that hematopoietins prolonged eosinophil survival and inhibited apoptosis. TGF-beta at concentrations > or = 10(-12) M abrogated the survival-prolonging effects of hematopoietins in a dose-dependent manner and induced apoptosis as determined by DNA fragmentation in agarose gels. The effect of TGF-beta was blocked by an anti-TGF-beta antibody. The anti-TGF-beta antibody also prolonged eosinophil survival on its own. The culture of eosinophils with IL-3 and GM-CSF stimulated the synthesis of GM-CSF and IL-5, respectively, suggesting an autocrine mechanism of growth factor production. TGF-beta inhibited the synthesis of GM-CSF and IL-5 by eosinophils. TGF-beta did not have any effect on the expression of GM-CSF receptors on eosinophils. We also studied the effect of TGF-beta on eosinophil function and found that TGF-beta inhibited the release of eosinophil peroxidase. Thus, TGF-beta seems to inhibit eosinophil survival and function. The inhibition of endogenous synthesis of hematopoietins may be one mechanism by which TGF-beta blocks eosinophil survival and induces apoptosis.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Birgit Dibbert ◽  
Isabelle Daigle ◽  
Doris Braun ◽  
Corinna Schranz ◽  
Martina Weber ◽  
...  

Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document