Quantity and Calculated Oxygen Consumption during Summit Metabolism of Brown Adipose Tissue in New-Born Lambs

Neonatology ◽  
1975 ◽  
Vol 26 (3-4) ◽  
pp. 214-220 ◽  
Author(s):  
G. Alexander ◽  
W. Bell
Nature ◽  
1965 ◽  
Vol 206 (4980) ◽  
pp. 201-202 ◽  
Author(s):  
M. J. R. DAWKINS ◽  
J. W. SCOPES

1983 ◽  
Vol 245 (6) ◽  
pp. E582-E586 ◽  
Author(s):  
M. Hayashi ◽  
T. Nagasaka

Fasting-induced changes in thermogenic responses to norepinephrine (NE, 4.0 micrograms X kg-1 X min-1 iv) were studied in anesthetized rats previously cold acclimated. The rats were divided into five groups at the end of 30–40 days of cold acclimation (5 degrees C). The five groups were kept for 5 days at 25 degrees C and fed (intact fed), fasted (intact fasted), fasted with daily treatment with thyroxine (T4, 2 micrograms/kg sc), thyroidectomized and fed, or thyroidectomized and fasted. In the intact fasted group, in which the weight of brown adipose tissue decreased, NE-induced increases in oxygen consumption, colonic temperature (T col), and temperature of the interscapular brown adipose tissue (TBAT) were markedly suppressed. The two thyroidectomized groups also showed a reduction in thermogenic response. In these three groups, TBAT was lower than Tcol throughout NE infusion. In the T4-treated fasted group, fasting-induced suppression of thermogenic response to NE was largely prevented. In the intact fed and the T4-treated fasted groups, TBAT attained higher values than Tcol during NE infusion. Plasma levels of thyroid hormones were significantly lower in the intact fasted group than in the intact fed or the T4-treated fasted group. These results suggest that fasting-induced suppression of the thermogenic response to NE is largely due to the reduced thermogenic response of brown adipose tissue to NE. The lowering of the levels of the thyroid hormones induced by fasting may be one of a number of causes of the reduction in the thermogenic response of brown adipose tissue.


2003 ◽  
Vol 95 (4) ◽  
pp. 1584-1590 ◽  
Author(s):  
Angel A. Zaninovich ◽  
Inés Rebagliati ◽  
Marcela Raíces ◽  
Conrado Ricci ◽  
Karl Hagmüller

The effects of long-term cold exposure on muscle and liver mitochondrial oxygen consumption in hypothyroid and normal rats were examined. Thyroid ablation was performed after 8-wk acclimation to 4°C. Hypothyroid and normal controls remained in the cold for an additional 8 wk. At the end of 16-wk cold exposure, all hypothyroid rats were alive and normothermic and had normal body weight. At ambient temperature (24°C), thyroid ablation induced a 65% fall in muscle mitochondrial oxygen consumption, which was reversed by thyroxine but not by norepinephrine administration. After cold acclimation was reached, suppression of thyroid function reduced muscle mitochondrial respiration by 30%, but the hypothyroid values remained about threefold higher than those in hypothyroid muscle in the warm. Blockade of β- and α1-adrenergic receptors in both hypothyroid and normal rats produced hypothermia in vivo and a fall in muscle, liver, and brown adipose tissue mitochondria respiration in vitro. In normal rats, cold acclimation enhanced muscle respiration by 35%, in liver 18%, and in brown adipose tissue 450% over values in the warm. The results demonstrate that thyroid hormones, in the presence of norepinephrine, are major determinants of thermogenic activity in muscle and liver of cold-acclimated rats. After thyroid ablation, cold-induced nonshivering thermogenesis replaced 3,5,3′-triiodothyronine-induced thermogenesis, and normal body temperature was maintained.


1967 ◽  
Vol 45 (11) ◽  
pp. 1763-1771 ◽  
Author(s):  
Jane C. Roberts ◽  
Robert E. Smith

The effects of temperature in vitro upon metabolic rates of homogenates of brown fat and liver from control and cold-acclimated rats have been examined over the range 10–37 °C. At all temperatures, brown adipose tissue exhibits a higher rate of oxygen consumption [Formula: see text] than does liver, α-ketoglutarate being used as substrate. At 10 °C, brown adipose tissue retains a larger percentage (36–38%) of its 37 °C metabolic rate than does liver (22–24%).Q10 values and energies of activation (Ea) have been determined and compared with other data reported for these tissues. At 20 °C, breaks appear in the Arrhenius plots for liver from both control and cold-acclimated rats and also for brown fat from control rats, but not for the brown fat from cold-acclimated rats. Thus brown adipose tissue from cold-acclimated rats retains relatively higher levels of respiration at temperatures below the 20 °C breaking point than does brown fat from control rats.In view of previously reported cold-induced increases in mass, vascularity, and [Formula: see text] of brown fat, this decreased temperature sensitivity in the cold-acclimated rats appears wholly consonant with the adaptive behavior of brown fat in its role as a thermogenic effector.


Sign in / Sign up

Export Citation Format

Share Document