scholarly journals High Glucose Concentration Stimulates NHE-1 Activity in Distal Nephron Cells: the Role of the Mek/Erk1/2/p90RSKand p38MAPK Signaling Pathways

2014 ◽  
Vol 33 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Juliana Martins da Costa-Pessoa ◽  
Rosélia Santos Damasceno ◽  
Ubiratan Fabres Machado ◽  
Olívia Beloto-Silva ◽  
Maria Oliveira-Souza
1988 ◽  
Vol 252 (3) ◽  
pp. 701-707 ◽  
Author(s):  
N Welsh ◽  
A Sjöholm

The aim of the present study was to evaluate the role of polyamines in the metabolism and insulin production of pancreatic-islet cells. For this purpose islets were prepared from adult mice and used either immediately or after tissue culture. There was a significant decrease in the islet content of spermidine during culture, although the effect was less pronounced in a high glucose concentration. Furthermore, a stimulatory effect of a high glucose concentration, as compared with low guclose, on the content of spermine was observed. To elucidate further the role of polyamaines in beta-cell physiology, the ornithine decarboxylase inhibitors difuoromethylornithine (DFMO) and methylacetylenic putrescine (MAP) and the S-adenosylmethionine decarboxylase inhibitor ethylglyoxal bis(guanylhydrazone) (EGBG) were added to the culture media. Addition of DFMO together with MAP decreased the cellular contents of putrescine and spermidine, whereas the content of sperimine was unaffected. When EGBG was added in combination with DFMO and MAP, there was a decrease in the content of spermine also. Cell viability in the islets depleted of their polyamine contents was not impaired, as assessed by determinations of oxygen-uptake rates and ATP contents. Depletion of putescine plus spermidine by addition of DFMO+MAP was associated with decreased biosynthesis of (pro)insulin and total protein. When the content of spermine was decreased also by the further addition of EGBG, the decrease in (pro) insulin biosynthesis was more pronounced and was paralleled by a decrease in the insulin-mRNA content. Under these conditions, the glucose-stimulated insulin release, the insulin content and the rates of islet DNA synthesis were also decreased. It is concluded that putrescine and spermidine are necessary for the maintenance of normal insulin and protein biosynthesis, whereas spermine may exert a role in some other cellular processes, such as DNA replication, RNA transcription and glucose-stimulated insulin release.


1991 ◽  
Vol 5 (2-3) ◽  
pp. 118-120 ◽  
Author(s):  
Shigehiro Katayama ◽  
Mari Abe ◽  
Kiyoshi Tanaka ◽  
Akira Omoto ◽  
Kiyohiko Negishi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Gericke ◽  
K. Suminska-Jasińska ◽  
A. Bręborowicz

AbstractChronic exposure of retinal endothelium cells to hyperglycemia is the leading cause of diabetic retinopathy. We evaluated the effect of high glucose concentration on senescence in human retinal endothelial cells (HREC) and modulation of that effect by Sulodexide. Experiments were performed on HREC undergoing in vitro replicative senescence in standard medium or medium supplemented with glucose 20 mmol/L (GLU) or mannitol 20 mnol/L (MAN). Effect of Sulodexide 0.5 LRU/mL (SUL) on the process of HREC senescence was studied. Glucose 20 mmol/L accelerates senescence of HREC: population doubling time (+ 58%, p < 0.001) β-galactosidase activity (+ 60%, p < 0.002) intracellular oxidative stress (+ 65%, p < 0.01), expression of p53 gene (+ 118%, p < 0.001). Senescent HREC had also reduced transendothelial electrical resistance (TEER) (− 30%, p < 0.001). Mannitol 20 mmol/L used in the same scenario as glucose did not induce HREC senescence. In HREC exposed to GLU and SUL, the senescent changes were smaller. HREC, which became senescent in the presence of GLU, demonstrated higher expression of genes regulating the synthesis of Il6 and VEGF-A, which was reflected by increased secretion of these cytokines (IL6 + 125%, p < 0.001 vs control and VEGF-A + 124% p < 0.001 vs control). These effects were smaller in the presence of SUL, and additionally, an increase of TEER in the senescent HREC was observed. Chronic exposure of HREC to high glucose concentration in medium accelerates their senescence, and that process is reduced when the cells are simultaneously exposed to Sulodexide. Additionally, Sulodexide decreases the secretion of IL6 and VEGF-A from senescent HREC and increases their TEER.


2011 ◽  
Vol 14 (2) ◽  
pp. 32-35 ◽  
Author(s):  
Zhanna Alekseevna Akopyan ◽  
Georgy Vladimirovich Sharonov ◽  
Tatiana Nikolaevna Kochegura ◽  
Natalya Fedorovna Il'yashenko ◽  
Igor Eduardovich Belyanko ◽  
...  

Adipose issue is a source of mesenchymal stem cells (MSC) that can be used to stimulate blood vessel growth in ischemic tissues. Various metabolicdisorders including hypeglycemia may have negative effect on therapeutic properties of these cells. Aim. To study the influence of high glucose concentration on functional activity in human adipose tissue. Materials and methods. Flow cytometry and real time PCR were used to study functional activity of cultured MSC from human adipose issue at highglucose concentration. Results. Prolonged (10-12 days) incubation at a high glucose concentration (25 mM) suppressed the ability of MSC to stimulate angiogenesis. Also,glucose modified expression of genes activating and inhibiting angiogenesis but had no effect on MSC proliferation and apoptosis. Conclusion. High glucose concentration suppresses angiogenic activity of MSC in adipose tissue; it may account for incomplete restoration of bloodflow in diabetic patients.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134852 ◽  
Author(s):  
Chi-Yu Hsu ◽  
Jwu-Ching Shu ◽  
Mei-Hui Lin ◽  
Kowit-Yu Chong ◽  
Chien-Cheng Chen ◽  
...  

2007 ◽  
Vol 23 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Mattias Gäreskog ◽  
Jonas Cederberg ◽  
Ulf J. Eriksson ◽  
Parri Wentzel

Sign in / Sign up

Export Citation Format

Share Document