scholarly journals Akt2 Mediates TGF-�1-Induced Epithelial to Mesenchymal Transition by Deactivating GSK3�/Snail Signaling Pathway in Renal Tubular Epithelial Cells

2014 ◽  
Vol 34 (2) ◽  
pp. 368-382 ◽  
Author(s):  
Aiping Lan ◽  
Yongfen Qi ◽  
Jie Du
2017 ◽  
Vol 46 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Huifang Liu ◽  
Jiachuan Xiong ◽  
Ting He ◽  
Tangli Xiao ◽  
Yan Li ◽  
...  

Background: Hyperuricemia is an independent risk factor for causing chronic kidney disease and contributes to kidney fibrosis. After urate crystals get deposited in the kidney, they can cause hyperuricemia nephropathy, leading to glomerular hypertrophy and renal tubular interstitial fibrosis. Recent data showed that uric acid (UA) could induce epithelial mesenchymal transition (EMT) of renal tubular cells, in which NRLP3 inflammatory pathway was involved. However, whether TLR4/NF-κB signaling pathway is also involved in EMT of renal tubular cells induced by UA is not clear. Methods: Human renal tubular epithelial cells (HK-2) were directly treated with UA and the phenotypic transition was detected by morphological changes and the molecular markers of EMT. The activation of the TLR4/NF-κB signaling pathway induced by UA was measured by Western blot and its involvement was further confirmed by the inhibition of NF-κB activation or knockdown of toll like receptor 4 (TLR4) expression. Results: UA induced obvious morphological changes of HK-2 cell, accompanied with altered molecular markers of EMT including fibronectin, α-SMA and E-cadherin. In addition, UA significantly upregulated the gene expression of interleukin-1β and tumor necrosis factor-α in a time- and dose-dependent manner. Furthermore, UA significantly activated the TLR4/NF-κB signaling pathway in HK-2 cells, while the inhibition of the TLR4 expression by siRNA and NF-κB activation by PDTC significantly attenuated EMT induced by UA in HK-2 cells. Conclusions: UA can induce EMT in renal tubular epithelial cells by the activation of the TLR4/NF-κB signaling pathway, and the targeted intervention of the TLR4/NF-κB signaling pathway might effectively inhibit UA-induced renal interstitial fibrosis mediated by EMT.


2022 ◽  
Vol 12 (1) ◽  
pp. 71-80
Author(s):  
Ting Liu ◽  
Jie Chen ◽  
Yiying Ying ◽  
Ling Shi ◽  
Zhengyue Chen

This research aimed to study the inhibitory effect of Glurenorm (gliquidone) on epithelial-to-mesenchymal-transition (EMT) of renal tubular epithelial cells based on the diabetic nephropathy (DN) model. In this study, 30 specific pathogen-free (SPF) mice were selected to construct DN model and randomly rolled into groups A, B, and C, with 10 mice in each group. Low-dose, mediumdose, and high-dose Glurenorm were administered intragastrically. The results showed that the serum urea nitrogen content (7.23±0.39 mmol/L, 6.18±0.46 mmol/L) of control and C group was considerably inferior to A group (8.01±0.48 mmol/L), and the content of C group was greatly lower than controls (P < 0.05). The creatinine clearance rate (2.97±0.44 mL/min, 4.02±0.31 mL/min) of mice in control and C group was notably superior to A group (2.18±0.38 mL/min), and that of C group was obviously higher versus controls (P < 0.05). After 5 weeks of intragastric intervention by Glurenorm, the body mass of the mice in control and C group was evidently lower relative to A group, and that of C group was obviously higher versus controls (P < 0.05). Mice in control and C group were remarkably lower in body mass at the 7th week after Glurenorm intervention versus A group, and C group was relatively lower versus controls (P < 0.05). In short, EMT played an important role in promoting the occurrence and progression of renal fibrosis. Glurenorm can reduce the progression of renal fibrosis, inhibit EMT of renal tubular epithelial cells, and effectively protect kidney function.


Sign in / Sign up

Export Citation Format

Share Document