scholarly journals Idebenone Prevents Oxidative Stress, Cell Death and Senescence of Retinal Pigment Epithelium Cells by Stabilizing BAX/Bcl-2 Ratio

2015 ◽  
Vol 234 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Nicole Arend ◽  
Christian Wertheimer ◽  
Peter Laubichler ◽  
Armin Wolf ◽  
Anselm Kampik ◽  
...  

Purpose: Age-related macular degeneration (AMD) is one of the leading causes of blindness. Degeneration of the retinal pigment epithelium (RPE) is pathognomonic for the disease, and oxidative stress plays an important role in the pathogenesis of this disease. This study investigates potential antiapoptotic and cytoprotective effects of idebenone on cultured RPE cells (ARPE-19) under conditions of oxidative stress. Methods: ARPE-19 cells were treated with 1-100 µM idebenone. Cell viability (MTT assay), induction of intracellular reactive oxygen species (ROS) and histone-associated DNA fragments in mono- and oligonucleosomes, expression of proapoptotic BAX and antiapoptotic Bcl-2 as well as senescence-associated β-galactosidase (SA-β-Gal) activity were investigated under exposure to hydrogen peroxide (H2O2). Results: Idebenone concentrations from 1 to 20 µM showed no toxic effects on ARPE-19 cells. When cells were treated with H2O2, pretreatment with 5, 7.5, 10, and 20 µM idebenone led to a significant increase in the viability of ARPE-19 cells. In addition, idebenone pretreatment significantly attenuated the induction of SA-β-Gal and intracellular ROS as well as the amount of histone-associated DNA fragments after treatment with H2O2. The reduction of proapoptotic BAX and the elevation of antiapoptotic Bcl-2 under idebenone show that this process is rather mediated by inhibiting H2O2-induced apoptosis, not necrosis. Conclusion: In this study, idebenone increased survival of ARPE-19 cells and reduced cell death, senescence, and oxidative stress by stabilizing the BAX/Bcl-2 ratio.

2015 ◽  
Vol 14 (9) ◽  
pp. 1560-1577 ◽  
Author(s):  
Melisa D. Marquioni-Ramella ◽  
Angela M. Suburo

The course of Age-related Macular Degeneration (AMD) is described as the effect of light (400–580 nm) on various molecular targets in photoreceptors and the retinal pigment epithelium (RPE). Photo-damage is followed by inflammation, increasing oxidative stress and, probably, unveiling new photosensitive molecules.


2021 ◽  
Author(s):  
Tadeusz J Kaczynski ◽  
Elizabeth D Au ◽  
Michael H Farkas

Nuclear retention is a mechanism whereby RNA transcripts are held in the nucleus to maintain a proper nuclear-to-cytoplasmic balance or as a stockpile for use in responding to stimuli. Many mechanisms are employed to determine whether transcripts are retained or exported to the cytoplasm, though the extent to which tissue- or cell-type, stressors, or disease pathogenesis affect this process remains unclear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis, or progression, of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes, as well as externally from environmental insult. To evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), we performed poly-A RNA sequencing on nuclear and cytoplasmic fractions from induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide, as well as untreated controls. Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies of other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts is altered following oxidative stress, as is the retention of genes associated with AMD, IRDs, and those important for RPE physiology. These results provide a retention catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to hydrogen peroxide, offering insight into one of the potential roles oxidative stress plays in the progression of visual disorders.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Hernán H. Dieguez ◽  
Juan S. Calanni ◽  
Horacio E. Romeo ◽  
Agustina Alaimo ◽  
María F. González Fleitas ◽  
...  

AbstractNon-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.


2019 ◽  
Vol 20 (19) ◽  
pp. 4807 ◽  
Author(s):  
Feng Su ◽  
Christine Spee ◽  
Eduardo Araujo ◽  
Eric Barron ◽  
Mo Wang ◽  
...  

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Koji Ohashi ◽  
Masaaki Kageyama ◽  
Katsuhiko Shinomiya ◽  
Yukie Fujita-Koyama ◽  
Shin-ichiro Hirai ◽  
...  

Retinal pigment epithelium (RPE) degeneration is a crucial event in dry age-related macular degeneration and gyrate atrophy. The polyamine spermidine has been shown to induce RPE cell death in vitro. The present study aimed to establish a novel in vivo model of spermidine-induced RPE degeneration and to determine whether spermidine-induced RPE cell death involves oxidative mechanisms. In this study, spermidine caused ARPE-19 cell death in a concentration-dependent manner. This effect was prevented by removal of serum from the culture medium or treatment with amine oxidase inhibitors, N-acetylcysteine (NAC), or aldehyde dehydrogenase (ALDH). Intravitreal injection of spermidine into rats significantly increased the permeability of the blood-retinal barrier and decreased the amplitudes of scotopic electroretinogram a- and b-waves. Histological analysis revealed that spermidine induced vacuolation, atrophy, and dropout of RPE cells, leading to the disruption of photoreceptor outer segments. Simultaneous intravitreal administration of NAC and ALDH with spermidine prominently inhibited the functional and morphological changes induced by spermidine. In conclusion, this study demonstrated that the intravitreal administration of spermidine induced RPE cell dysfunction and death followed by photoreceptor degeneration in rats. These effects of spermidine are thought to be mediated by oxidative stress and a toxic aldehyde generated during spermidine oxidation.


Sign in / Sign up

Export Citation Format

Share Document