Structural-Functional Studies of Human Transferrin by Using in vitro Mutagenesis1

Author(s):  
Billy K. -C. Chow ◽  
Walter D. Funk ◽  
David K. Banfield ◽  
Janet A. Lineback ◽  
Anne B. Mason ◽  
...  
2018 ◽  
Author(s):  
Anna Vaczlavik ◽  
Stephanie Espiard ◽  
Marie-Odile North ◽  
Ludivine Drougat ◽  
Marthe Rizk-Rabin ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Monika Oláhová ◽  
Bradley Peter ◽  
Zsolt Szilagyi ◽  
Hector Diaz-Maldonado ◽  
Meenakshi Singh ◽  
...  

AbstractWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


Author(s):  
Silvia Martin-Almedina ◽  
Kazim Ogmen ◽  
Ege Sackey ◽  
Dionysios Grigoriadis ◽  
Christina Karapouliou ◽  
...  

Abstract Purpose Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. Methods Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. Results Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype–genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. Conclusion This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hai-Lin Dong ◽  
Jia-Qi Li ◽  
Gong-Lu Liu ◽  
Hao Yu ◽  
Zhi-Ying Wu

AbstractSorbitol dehydrogenase gene (SORD) has been identified as a novel causative gene of recessive forms of hereditary neuropathy, including Charcot–Marie–Tooth disease type 2 and distal hereditary motor neuropathy (dHMN). Our findings reveal two novel variants (c.404 A > G and c.908 + 1 G > C) and one known variant (c.757delG) within SORD in four Chinese dHMN families. Ex vivo cDNA polymerase chain reaction confirmed that c.908 + 1 G > C variant was associated with impaired splicing of the SORD transcript. In vitro cell functional studies showed that c.404 A > G variant resulted in aggregate formation of SORD and low protein solubility, confirming the pathogenicity of SORD variants. We have provided more evidence to establish SORD as a causative gene for dHMN.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xia Wang ◽  
Jin Wang ◽  
Yu-Man Tsui ◽  
Chaoran Shi ◽  
Ying Wang ◽  
...  

AbstractGrowing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC.


Diabetes ◽  
1985 ◽  
Vol 34 (5) ◽  
pp. 462-470 ◽  
Author(s):  
K. A. Ney ◽  
J. J. Pasqua ◽  
K. J. Colley ◽  
C. E. Guthrow ◽  
S. V. Pizzo
Keyword(s):  

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Liang Ge ◽  
David Melville ◽  
Min Zhang ◽  
Randy Schekman

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.


2002 ◽  
Vol 70 (5) ◽  
pp. 2549-2558 ◽  
Author(s):  
Ann E. Jerse ◽  
Emily T. Crow ◽  
Amy N. Bordner ◽  
Ishrat Rahman ◽  
Cynthia Nau Cornelissen ◽  
...  

ABSTRACT Neisseria gonorrhoeae is capable of utilizing a variety of iron sources in vitro, including human transferrin, human lactoferrin, hemoglobin, hemoglobin-haptoglobin complexes, heme, and heterologous siderophores. Transferrin has been implicated as a critical iron store for N. gonorrhoeae in the human male urethra. The demonstration that gonococci can infect the lower genital tracts of estradiol-treated BALB/c mice in the absence of human transferrin, however, suggests that other usable iron sources are present in the murine genital tract. Here we demonstrate that gonococcal transferrin and hemoglobin receptor mutants are not attenuated in mice, thereby ruling out transferrin and hemoglobin as essential for murine infection. An increased frequency of phase variants with the hemoglobin receptor “on” (Hg+) occurred in ca. 50% of infected mice; this increase was temporally associated with an influx of neutrophils and detectable levels of hemoglobin in the vagina, suggesting that the presence of hemoglobin in inflammatory exudates selects for Hg+ phase variants during infection. We also demonstrate that commensal lactobacilli support the growth of N. gonorrhoeae in vitro unless an iron chelator is added to the medium. We hypothesize that commensal lactobacilli may enhance growth of gonococci in vivo by promoting the solubilization of iron on mucosal surfaces through the production of metabolic intermediates. Finally, transferrin-binding lipoprotein (TbpB) was detected on gonococci in vaginal smears, suggesting that although gonococci replicate within the genital tracts of mice, they may be sufficiently iron-stressed to express iron-repressible proteins. In summary, these studies support the potential role of nontransferrin, nonhemoglobin iron sources during gonococcal infection of the female genital tract.


2016 ◽  
Vol 311 (6) ◽  
pp. C866-C873 ◽  
Author(s):  
R. Brent Thomson ◽  
Claire L. Thomson ◽  
Peter S. Aronson

The brush border Cl−-oxalate exchanger SLC26A6 plays an essential role in mediating intestinal secretion of oxalate and is crucial for the maintenance of oxalate homeostasis and the prevention of hyperoxaluria and calcium oxalate nephrolithiasis. Previous in vitro studies have suggested that SLC26A6 is heavily N-glycosylated. N-linked glycosylation is known to critically affect folding, trafficking, and function in a wide variety of integral membrane proteins and could therefore potentially have a critical impact on SLC26A6 function and subsequent oxalate homeostasis. Through a series of enzymatic deglycosylation studies we confirmed that endogenously expressed mouse and human SLC26A6 are indeed glycosylated, that the oligosaccharides are principally attached via N-glycosidic linkage, and that there are tissue-specific differences in glycosylation. In vitro cell culture experiments were then used to elucidate the functional significance of the addition of the carbohydrate moieties. Biotinylation studies of SLC26A6 glycosylation mutants indicated that glycosylation is not essential for cell surface delivery of SLC26A6 but suggested that it may affect the efficacy with which it is trafficked and maintained in the plasma membrane. Functional studies of transfected SLC26A6 demonstrated that glycosylation at two sites in the putative second extracellular loop of SLC26A6 is critically important for chloride-dependent oxalate transport and that enzymatic deglycosylation of SLC26A6 expressed on the plasma membrane of intact cells strongly reduced oxalate transport activity. Taken together, these studies indicated that oxalate transport function of SLC26A6 is critically dependent on glycosylation and that exoglycosidase-mediated deglycosylation of SLC26A6 has the capacity to profoundly modulate SLC26A6 function.


Sign in / Sign up

Export Citation Format

Share Document