scholarly journals High Frequencies of Anti-Host Reactive CD8+ T Cells Ignore Non-Hematopoietic Antigen after Bone Marrow Transplantation in a Murine Model

2016 ◽  
Vol 38 (4) ◽  
pp. 1343-1353 ◽  
Author(s):  
Asmae Gassa ◽  
Halime Kalkavan ◽  
Fu Jian ◽  
Vikas Duhan ◽  
Vishal Khairnar ◽  
...  

Background: Graft versus host disease (GvHD) occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT). Mechanisms causing this disease remain to be studied. Methods: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+) and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33) antigen derived from the major lymphocytic choriomeningitis virus (LCMV) epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. Results: We found that anti-host reactive CD8+ T cells (P14 T cells) were not negatively selected in the thymus and that they were present in wild type (WT) recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS) induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. Conclusion: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.

Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1346-1355
Author(s):  
K Offit ◽  
JP Burns ◽  
I Cunningham ◽  
SC Jhanwar ◽  
P Black ◽  
...  

Serial cytogenetic studies were performed on 64 patients with chronic myelogenous leukemia (CML) after T cell-depleted allogeneic bone marrow transplantation (BMT). Forty patients with CML in chronic phase (CP) received cytoreduction followed by BMT with HLA-matched T cell-depleted allogeneic marrow. The remaining 24 patients were transplanted in second chronic, accelerated, or blastic phase, or received T cell- depleted grafts with a dose of T cells added back. The Y chromosome and autosomal heteromorphisms were used to distinguish between donor and host cells. Mixed hematopoietic chimerism (presence of donor and host cells) was identified in 90% of patients in first CP. The Philadelphia (Ph) chromosome reappeared in 16 of the 40 first CP CML patients. As expected, patients who had detectable Ph chromosome positive cells at any time during the posttransplant period had a high likelihood of subsequent clinical relapse. Transient disappearance of the Ph positive clone was rarely observed, and was followed by reappearance of the Ph chromosome or clinical relapse. A subset of engrafted patients with greater than 25% host cells within 3 months post-BMT had a significantly shorter survival time free of cytogenetic or clinical relapse compared with other patients. In patients who had received donor T cells added to the T cell-depleted graft, there was a higher proportion of complete chimerism. Clonal progression of Ph positive as well as negative cells was observed and may be the result of radiation induced breakage. Serial cytogenetic studies of patients post-BMT can provide useful information regarding the biologic and clinical behavior of CML.


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1346-1355 ◽  
Author(s):  
K Offit ◽  
JP Burns ◽  
I Cunningham ◽  
SC Jhanwar ◽  
P Black ◽  
...  

Abstract Serial cytogenetic studies were performed on 64 patients with chronic myelogenous leukemia (CML) after T cell-depleted allogeneic bone marrow transplantation (BMT). Forty patients with CML in chronic phase (CP) received cytoreduction followed by BMT with HLA-matched T cell-depleted allogeneic marrow. The remaining 24 patients were transplanted in second chronic, accelerated, or blastic phase, or received T cell- depleted grafts with a dose of T cells added back. The Y chromosome and autosomal heteromorphisms were used to distinguish between donor and host cells. Mixed hematopoietic chimerism (presence of donor and host cells) was identified in 90% of patients in first CP. The Philadelphia (Ph) chromosome reappeared in 16 of the 40 first CP CML patients. As expected, patients who had detectable Ph chromosome positive cells at any time during the posttransplant period had a high likelihood of subsequent clinical relapse. Transient disappearance of the Ph positive clone was rarely observed, and was followed by reappearance of the Ph chromosome or clinical relapse. A subset of engrafted patients with greater than 25% host cells within 3 months post-BMT had a significantly shorter survival time free of cytogenetic or clinical relapse compared with other patients. In patients who had received donor T cells added to the T cell-depleted graft, there was a higher proportion of complete chimerism. Clonal progression of Ph positive as well as negative cells was observed and may be the result of radiation induced breakage. Serial cytogenetic studies of patients post-BMT can provide useful information regarding the biologic and clinical behavior of CML.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 428-431 ◽  
Author(s):  
GC de Gast ◽  
LF Verdonck ◽  
JM Middeldorp ◽  
TH The ◽  
A Hekker ◽  
...  

Abstract In 22 patients with malignancies, treated with high-dose chemoradiotherapy and autologous bone marrow transplantation (BMT), peripheral blood T cell subsets and functions were studied. In ten cytomegalovirus (CMV)-negative patients, CD4+ and CD8+ T cells (representing T cells of the helper/inducer phenotype and T cells of the suppressor/cytotoxic phenotype, respectively), recovered slowly and simultaneously. In 12 CMV-positive patients, however, CD8+ T cells recovered more rapidly than CD4+ T cells and rose to increased counts. No T cells with an immature phenotype (CD1+, OKT6+) were observed. Lymphocyte stimulation by herpes simplex virus infected fibroblasts (and by CMV-infected fibroblasts in CMV-positive patients) in contrast remained high and even increased after BMT in both groups. These data indicate that T cell recovery after autologous BMT is mainly due to proliferation of mature T cells present in the BM graft and not to generation of new T cells from T cell precursors.


1987 ◽  
Vol 5 (12) ◽  
pp. 1900-1911 ◽  
Author(s):  
C L Schwartz ◽  
C P Minniti ◽  
P Harwood ◽  
S Na ◽  
M L Banquerigo ◽  
...  

2'Deoxycoformycin (dCF) specifically inhibits adenosine deaminase (ADA) and causes selective cytotoxicity of normal and malignant T cells. In clinical trials, dCF caused rapid lysis of malignant T lymphoblasts. Although dCF has been associated with dose-limiting nonhematopoietic toxicities, myelosuppression has not been observed. Since dCF is relatively nontoxic to hematopoietic stem cells, we tested dCF for utility in the ex vivo purging of malignant T lymphoblasts from remission leukemic bone marrow for autologous bone marrow transplantation. We found that T lymphoblast cell lines were sensitive to dCF (plus deoxyadenosine [dAdo]) under conditions that did not ablate human hematopoietic colony-forming cells. Moreover, combined pharmacologic (dCF plus dAdo) and immunologic (anti-T cell monoclonal antibodies [McAb] plus complement) purging resulted in additive reduction in clonogenic T lymphoblasts. These results provide the basis for a clinical trial of bone marrow transplantation using combined pharmacologic/immunologic purging of T lymphoblasts from patients' harvested autologous marrow.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1333-1341 ◽  
Author(s):  
P Tiberghien ◽  
CW Reynolds ◽  
J Keller ◽  
S Spence ◽  
M Deschaseaux ◽  
...  

Abstract Allogeneic bone marrow transplantation (BMT) is associated with a severe complication--graft-versus-host disease (GVHD). Although effectively preventing GVHD, ex vivo T-lymphocyte marrow depletion unfortunately increases graft rejection and reduces the graft-versus- leukemia (GVL) effect. The ex vivo transfer of the herpes simplex thymidine kinase (HS-tk) suicide gene into T cells before their infusion with hematopoietic stem cells could allow for selective in vivo depletion of these T cells with ganciclovir (GCV) if subsequent GVHD was to occur. Thus, one could preserve the beneficial effects of the T cells on engraftment and tumor control in patients not experiencing severe GVHD. To obtain T cells specifically depleted by GCV, we transduced primary T cells with a retroviral vector containing the HS-tk and neomycin resistance (NeoR) genes. Gene transfer was performed by coculturing PHA +/- CD3- or alloantigen-stimulated purified T cells on an irradiated retroviral vector producer cell line or by incubating the T cells in supernatant from the producer. Subsequent culture in G418 for 1 week allowed for the selection of transduced cells. GCV treatment of interleukin-2-responding transduced and selected cells resulted in greater than 80% growth inhibition, whereas GCV treatment of control cells had no effect. Similarly, the allogeneic reactivity of HS-tk-transduced cells was specifically inhibited by GCV. Combining transduced and nontransduced T cells did not show a bystander effect, thus implying that all of the cells inhibited by GCV were indeed transduced. Lastly, studies involving the transduction of the HUT-78 (T-lymphoma) cell line suggest that stable expression of HS-tk can be maintained over 3 months in vitro in the absence of G418. In summary, we have established the feasibility of generating HS-tk-transduced T cells for subsequent in vivo transfer with hematopoietic stem cells and, if GVHD occurs, specific in vivo GCV- induced T-cell depletion in allogeneic BMT recipients.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1522-1529 ◽  
Author(s):  
Kai Sun ◽  
Minghui Li ◽  
Thomas J. Sayers ◽  
Lisbeth A. Welniak ◽  
William J. Murphy

Abstract Dissociating graft-versus-tumor (GVT) effect from acute graft-versus-host disease (GVHD) still remains a great challenge in allogeneic bone marrow transplantation (allo-BMT). Bortezomib, a proteasome inhibitor, has shown impressive efficacy as a single agent in patients with hematologic malignancies but can result in toxicity when administered late after allogeneic transplantation in murine models of GVHD. In the current study, the effects of T-cell subsets and their associated cytokines on the efficacy of bortezomib in murine allogeneic BMT were investigated. Increased levels of serum tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) were observed after allo-BMT and continuous bortezomib administration. Bortezomib-induced GVHD-dependent mortality was preventable by depletion of CD4+ but not CD8+ T cells from the donor graft. The improved survival correlated with markedly reduced serum TNFα but not IFNγ levels. Transfer of Tnf−/− T cells also protected recipients from bortezomib-induced GVHD-dependent toxicity. Importantly, prolonged administration of bortezomib after transplantation of purified CD8+ T cells resulted in enhanced GVT response, which was dependent on donor CD8+ T cell–derived IFNγ. These results indicate that decreased toxicity and increased efficacy of bortezomib in murine allo-BMT can be achieved by removal of CD4+ T cells from the graft or by inhibiting TNFα.


Sign in / Sign up

Export Citation Format

Share Document