scholarly journals Somatic Mutation Theory - Why it's Wrong for Most Cancers

2016 ◽  
Vol 38 (5) ◽  
pp. 1663-1680 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Hysteron proteron reverses both temporal and logical order and this syllogism occurs in carcinogenesis and the somatic mutation theory (SMT): the first (somatic mutation) occurs only after the second (onset of cancer) and, therefore, observed somatic mutations in most cancers appear well after the early cues of carcinogenesis are in place. It is no accident that mutations are increasingly being questioned as the causal event in the origin of the vast majority of cancers as clinical data show little support for this theory when compared against the metrics of patient outcomes. Ever since the discovery of the double helical structure of DNA, virtually all chronic diseases came to be viewed as causally linked to one degree or another to mutations, even though we now know that genes are not simply blueprints, but rather an assemblage of alphabets that can, under non-genetic influences, be used to assemble a business letter or a work of Shakespearean literature. A minority of all cancers is indeed caused by mutations but the SMT has been applied to all cancers, and even to chemical carcinogenesis, in the absence of hard evidence of causality. Herein, we review the 100 year story of SMT and aspects that show why genes are not just blueprints, how radiation and mutation are associated in a more nuanced view, the proposed risk of cancer and bad luck, and the in vitro and in vivo evidence for a new cancer paradigm. This paradigm is scientifically applicable for the majority of non-heritable cancers and consists of a six-step sequence for the origin of cancer. This new cancer paradigm proclaims that somatic mutations are epiphenomena or later events occurring after carcinogenesis is already underway. This serves not just as a plausible alternative to SMT and explains the origin of the majority of cancers, but also provides opportunities for early interventions and prevention of the onset of cancer as a disease.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2487
Author(s):  
Chao Gao ◽  
Guangxu Jin ◽  
Elizabeth Forbes ◽  
Lingegowda S. Mangala ◽  
Yingmei Wang ◽  
...  

IK is a mitotic factor that promotes cell cycle progression. Our previous investigation of 271 endometrial cancer (EC) samples from the Cancer Genome Atlas (TCGA) dataset showed IK somatic mutations were enriched in a cluster of patients with high-grade and high-stage cancers, and this group had longer survival. This study provides insight into how IK somatic mutations contribute to EC pathophysiology. We analyzed the somatic mutational landscape of IK gene in 547 EC patients using expanded TCGA dataset. Co-immunoprecipitation and mass spectrometry were used to identify protein interactions. In vitro and in vivo experiments were used to evaluate IK’s role in EC. The patients with IK-inactivating mutations had longer survival during 10-year follow-up. Frameshift and stop-gain were common mutations and were associated with decreased IK expression. IK knockdown led to enrichment of G2/M phase cells, inactivation of DNA repair signaling mediated by heterodimerization of Ku80 and Ku70, and sensitization of EC cells to cisplatin treatment. IK/Ku80 mutations were accompanied by higher mutation rates and associated with significantly better overall survival. Inactivating mutations of IK gene and loss of IK protein expression were associated with weakened Ku80/Ku70-mediated DNA repair, increased mutation burden, and better response to chemotherapy in patients with EC.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1862-1872 ◽  
Author(s):  
M Introna ◽  
VV Alles ◽  
M Castellano ◽  
G Picardi ◽  
L De Gioia ◽  
...  

Abstract Pentraxins, which include C reactive protein (CRP) and serum amyloid P component (SAP), are prototypic acute phase reactants that serve as indicators of inflammatory reactions. Here we report genomic and cDNA cloning of mouse ptx3 (mptx3), a member of the pentraxin gene family and characterize its extrahepatic expression in vitro and in vivo. mptx3 is organized into three exons on chromosome 3: the first (43 aa) and second exon (175 aa) code for the signal peptide and for a protein portion with no high similarity to known sequences the third (203 aa) for a domain related to classical pentraxins, which contains the “pentraxin family signature.” Analysis of the N terminal portion predicts a predominantly alpha helical structure, while the pentraxin domain of ptx3 is accommodated comfortably in the tertiary structure fold of SAP. Normal and transformed fibroblasts, undifferentiated and differentiated myoblasts, normal endothelial cells, and mononuclear phagocytes express mptx3 mRNA and release the protein in vitro on exposure to interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF)alpha. mptx3 was induced by bacterial lipopolysaccharide in vivo in a variety of organs and, most strongly, in the vascular endothelium of skeletal muscle and heart. Thus, mptx3 shows a distinct pattern of in vivo expression indicative of a significant role in cardiovascular and inflammatory pathology.


BioEssays ◽  
2013 ◽  
Vol 36 (1) ◽  
pp. 118-120 ◽  
Author(s):  
Ana M. Soto ◽  
Carlos Sonnenschein

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3827-3827
Author(s):  
Francesca Ferraro ◽  
Christopher A Miller ◽  
Amy Abdalla ◽  
Nichole Helton ◽  
Nathan Salomonis ◽  
...  

Currently, it is not clear why some patients with acute myeloid leukemia (AML) can be "cured" with chemotherapy alone; are they living with small amounts of disease that is held in check by immunologic (or other) mechanisms, or is their disease really eradicated? The percentage of cytogenetically normal AML patients who have long (>5 years) first remissions (LFRs) after chemotherapy alone is low (about 9.1% in patients <60 years and 1.6% in >60 years1). For this reason, most intermediate risk patients are offered allogeneic transplantation to decrease their risk for relapse. To better understand mechanisms of chemotherapy sensitivity in AML, we performed an analysis of the mutation landscape and persistence, using samples from 8 normal karyotype LFR patients (without CEBPA mutations) who received standard "7+3" induction and high dose cytarabine consolidation as their only therapy. The mean age at diagnosis was 43.5 years, and the mean follow up in first remission is 7.6 years; none of these patients has relapsed to date. For each case, we performed enhanced exome sequencing at diagnosis (235x coverage of the entire exome, and ~1008x coverage of recurrently mutated AML genes). Each case had at least one documented AML driver mutation, with a median of 29 somatic mutations in the exome space. We created probes for 225 mutations (mean 28 per case), and performed error-corrected sequencing (Haloplex) for all available remission samples. The mean depth of Haloplex coverage was 1607x, and each sample had at least one AML-specific mutation assayed, with a sensitivity of 1 cell in 1,750 (0.06%). 7/8 patients demonstrated complete clearance of all mutations in all remission samples tested, which was confirmed with digital droplet PCR for 5 cases, with a sensitivity of detection of 1 cell in 100,000. In one case, we detected a persistent ancestral clone harboring DNMT3AR882H, which can be associated with long first remissions for some patients2. Strikingly, the founding clone in all 8 cases had one or more somatic mutations in genes known to drive cell proliferation (e.g. MYC, FLT3, NRAS, PTPN11, Figure 1 top panel). These are usually subclonal mutations that occur late during leukemic progression, suggesting that the presence of a "proliferative hit" in the founding clone might be important for chemotherapy clearance of all the AML cells in a given patient. To support this hypothesis, we analyzed the mutational clearance of 82 AML cases with paired diagnosis and day 30 post-chemotherapy bone marrow samples. We observed that, whether present in the founding clone or in subclones, mutations in MYC, CEBPA, FLT3, NRAS, and PTPN11 cleared after induction chemotherapy in all samples, while other mutations were often persistent at day 30 (e.g. DNMT3A, IDH1, IDH2, NPM1, TET2; Figure 1 bottom panel). Compared to other published sequencing studies of AML, MYC and NRAS mutations were significantly enriched in this small cohort (MYC p= 0.002, and NRAS p= 0.034), with MYC enrichment being particularly striking (37.5% versus 1.8%). All MYC mutations were canonical single base substitutions occurring in the highly conserved MYC Box 2 domain at the N-terminus of MYC (p.P74Q or p.T73N). Overexpression of MYCP74Q in murine hematopoietic progenitors prolonged MYC half life (89 min vs. 44 min for wild type), and enhanced cytarabine sensitivity at all concentrations tested (range 10-1000 nM, p=0.0003), both in vitro and in a MYC-driven leukemia model in vivo. MYC expression measured with flow cytometry in the blasts of the LFR samples was significantly higher (p=0.045) compared to unfavorable risk (complex karyotype) or other intermediate risk categories, but similar to good risk AML (biallelic CEBPA mutations, core binding factor fusion-associated AML, and AML with isolated NPMc), suggesting that activation of the MYC pathway may represent a shared feature of chemosensitive patients. Taken together, these data suggest that some intermediate patients who are effectively "cured" with chemotherapy alone may not have persistent subclinical disease, nor retained ancestral clones that could potentially contribute to relapse. Importantly, these patients often have mutations driving cell proliferation in the founding clone, indicating that the presence of specific mutations in all malignant cells may be critical for complete AML cell clearance with chemotherapy. 1. Blood Adv. 2018 Jul 10; 2(13): 1645-1650 2. N Engl J Med 2018; 378:1189-1199 Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Author(s):  
Björn LDM Brücher ◽  
Ijaz S Jamall

Background: The somatic mutation theory as the origin of cancer (carcinogenesis) was born some 100 years ago, when Theodor Boveri 1914 suggested that a combination of chromosomal defects may result in cancer. This was followed by Karl-Heinrich Bauer in 1928 suggesting that mutations could cause cancer. Subsequently, in 1953 Carl Nordling proposed that a number of mutated genes could cause cancer. Alfred Knudson in 1971 proposed that one hit (one mutation) would result in a clone of cancerous cells. This was modified to a 2-hit-theory later and it seems that cancer biology has continued to try to bolster the somatic mutation theory by recently suggesting that ‘driver’ and ‘passenger’ mutations were necessary and when this proved insufficient, others proposed the hyper-mutation theory in 2014. In the attempt to clothe the Emperor, it was forgotten that mutations found in advanced cancers are either late events or epiphenomena that occur after carcinogenesis (cancer development) and especially after the appearance of a pre-cancerous niche. Reality: Fewer than 10% of cancers are proven to be hereditary (i.e., causally related to germline mutations) and this ratio is even lower in cancers of the stomach (<1%), the colorectum (3-8%) and breast (8%). Infection-triggered cancers constitute some 15% of all cancers and the remaining about some 80% cancers are sporadic, meaning their cause is unknown. New cancer paradigm: Findings from the plant and animal kingdoms, molecular and clinical data over the last 250 years were critically reviewed and gave rise to a new cancer hypothesis containing a multi-step process of 6 sequences. These include, (1) a pathogenic biological or chemical stimulus is followed by (2) chronic inflammation, from which develops (3) fibrosis with associated changes in the cellular microenvironment. These remodeling changes result in a (4) pre-cancerous niche, which triggers the deployment of (5) a chronic stress escape strategy, and when this fails to resolve, (6) a transition of a normal cell to a cancer cell occurs. Consequences: This recently proposed cancer model explains the origins of the vast majority of cancers which are until now were referred to as ‘sporadic’ cancers. Furthermore, this theory points out the need to establish preventive measures long before a cancer becomes clinically apparent. The epistemology of the origin of cancer is reviewed and presented.


2013 ◽  
Vol 20 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Rodrigo A Toledo ◽  
Yuejuan Qin ◽  
Subramanya Srikantan ◽  
Nicole Paes Morales ◽  
Qun Li ◽  
...  

Pheochromocytomas and paragangliomas are highly vascular tumors of the autonomic nervous system. Germline mutations, including those in hypoxia-related genes, occur in one third of the cases, but somatic mutations are infrequent in these tumors. Using exome sequencing of six paired constitutive and tumor DNA from sporadic pheochromocytomas and paragangliomas, we identified a somatic mutation in the HIF2A (EPAS1) gene. Screening of an additional 239 pheochromocytomas/paragangliomas uncovered three other HIF2A variants in sporadic (4/167, 2.3%) but not in hereditary tumors or controls. Three of the mutations involved proline 531, one of the two residues that controls HIF2α stability by hydroxylation. The fourth mutation, on Ser71, was adjacent to the DNA binding domain. No mutations were detected in the homologous regions of the HIF1A gene in 132 tumors. Mutant HIF2A tumors had increased expression of HIF2α target genes, suggesting an activating effect of the mutations. Ectopically expressed HIF2α mutants in HEK293, renal cell carcinoma 786-0, or rat pheochromocytoma PC12 cell lines showed increased stability, resistance to VHL-mediated degradation, target induction, and reduced chromaffin cell differentiation. Furthermore, mice injected with cells expressing mutant HIF2A developed tumors, and those with Pro531Thr and Pro531Ser mutations had shorter latency than tumors from mice with wild-type HIF2A. Our results support a direct oncogenic role for HIF2A in human neoplasia and strengthen the link between hypoxic pathways and pheochromocytomas and paragangliomas.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 808-808 ◽  
Author(s):  
Raajit K. Rampal ◽  
Suveg Pandey ◽  
Omar Abdel-Wahab ◽  
Jennifer J Tsai ◽  
Taghi Manshouri ◽  
...  

Abstract Abstract 808 A subset of patients with Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs) (Polycythemia Vera (PV), Essential Thrombocytosis (ET), and Primary Myelofibrosis (PMF)) subsequently transform to acute myeloid leukemia (AML). Leukemic transformation (LT) after MPN occurs in as many as 23% of PMF patients within 10 years of diagnosis, and in 4–8% of PV and ET patients in the first 18 years after diagnosis. The development of AML after an antecedent MPN is associated with a dismal clinical outcome, and is associated with a poor response to conventional anti-leukemic therapies. Although somatic mutations in the JAK-STAT signaling pathway, including in JAK2 and MPL, occur in the majority of MPN patients, the somatic mutations that drive LT from a pre-existing MPN have not been fully delineated. Recent candidate mutational studies have identified recurrent somatic mutations in a subset of known leukemogenic disease alleles at the time of transformation from MPN to AML, including mutations in TP53, IDH1/2, TET2 and SRSF2 as well as deletions in IKZF1. However, the functional contribution of these specific genetic events to LT has not been delineated, and genetically accurate models of transformation of Philadelphia-chromosome negative MPN to AML have not been reported to date. In order to develop a genetically accurate murine model of LT, we have modeled expression of JAK2V617F mutation in combination with TP53 loss in vivo to further our understanding of progression from MPN to AML and to use this preclinical model of LT to test novel therapies. Bone marrow (BM) cells from C57/Bl6 Tp53−/− and littermate control mice were infected with JAK2V617F-IRES-GFP retrovirus, followed by transplantation of transduced cells into lethally irradiated congenic recipients. Of note, transplantation of JAK2V617F/Tp53−/− cells, but not JAK2V617F positive cells was associated with impaired survival; 50% of mice injected with JAK2V617F/Tp53−/− cells died by day 100, whereas all mice injected with JAK2V617F positive cells survived 100 days or longer (p=0.011) (figure 1). Mice injected with JAK2V617F/Tp53−/− cells presented with significant leukocytosis, with a mean WBC of 38.4 in mice engrafted with JAK2V617F/Tp53−/− cells compared with 11.4 in JAK2V617F/Tp53 wildtype mice. At the time of sacrifice, all mice engrafted with JAK2V617F/Tp53−/− cells had increased numbers of blasts in the peripheral blood and bone marrow, as assessed by morphologic evaluation and flow cytometric analysis which noted CD117 expression on leukemic blasts. BM cells from mice engrafted with JAK2V617F/Tp53−/− cells were characterized by increased serial replating (>10 platings), which was not observed in plating studies with JAK2V617F positive cells. In addition, we noted that the disease from JAK2V617F/Tp53−/− cells, but not JAK2V617F positive cells, was transplantable into secondary recipients consistent with increased self-renewal in vivo. We have begun testing the efficacy of novel therapies in this murine model, using both in vitro assays and in vivo studies in secondary transplantation studies. Treatment with the JAK kinase inhibitors INCB18424 and CYT 387 resulted in dose-dependent inhibition of colony formation in vitro. The combination of INCB18424 and Decitabine (which has demonstrated clinical efficacy in post-MPN-AML) is associated with synergistic inhibitory effects in vitro. Based on these results, we are performing in vivo studies with INCB18424, Decitabine, and INCB18424 + Decitabine, and results from these preclinical therapeutic studies will be presented in detail. Taken together, our data demonstrate that expression of JAK2V617F plus Tp53 loss, a genoptype commonly seen in patients who transform to AML after MPN, efficiently models LT in vivo. This model can now be utilized to examine the mechanisms of leukemic transformation, including assessment of the leukemic cell of origin in transformed disease. In addition this model can be utilized to test novel therapeutic strategies in a preclinical setting, which can be used to inform clinical trials in this poor-risk hematologic malignancy. Figure 1: Survival curve of mice transplanted with JAK2V617F in presence and absence of Tp53 Figure 1:. Survival curve of mice transplanted with JAK2V617F in presence and absence of Tp53 Disclosures: Verstovsek: Incyte Corporation: Research Funding; Novartis: Research Funding; AstraZeneca: Research Funding; Celgene: Research Funding; SBIO: Research Funding; Lilly Oncology: Research Funding; Bristol-Myers: Research Funding; Geron Corp.: Research Funding; Gilead: Research Funding; YM Biosciences: Research Funding; Roche: Research Funding; NS Pharma: Research Funding; Infinity Pharmaceuticals: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document