scholarly journals A Feedback Loop Between miR-30a/c-5p and DNMT1 Mediates Cisplatin Resistance in Ovarian Cancer Cells

2017 ◽  
Vol 41 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Xi Han ◽  
Shuai Zhen ◽  
Zhongxue Ye ◽  
Jiaojiao Lu ◽  
Lijie Wang ◽  
...  

Background: Many microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression patterns have been suggested to correlate with chemo-resistance of cancer cells. We aim to study the role of miR-30 family members in cisplatin-resistance of ovarian cancer cells. Methods: qRT-PCR was used to compare differential expression levels of miR-30 family members in ovarian cancer cell line A2780 and its cisplatin-resistant derivative CP70. Changes of cisplatin-sensitivity in miR-30a-5p- and miR-30c-5p-overexpressed-CP70 cells and miR-30a-5p- and miR-30c-5p-inhibited-A2780 cells were examined by CCK8 assay and apoptosis analysis using flow cytometry; targets of miR-30a/c-5p were analyzed by western blotting and luciferase reporter assay; methylation regulation of pre-miR-30a/c-5p was examined by methylation specific PCR. Results: miR-30a-5p and miR-30c-5p, in contrast to other miR-30 family members, dramatically decreased in cisplatin-resistant CP70 cells due to overexpressed-DNMT1 induced aberrant methylation. miR-30a/c-5p in turn directly inhibited DNMT1 as well as Snail. Forced expression of miR-30a/c-5p or knocking down of DNMT1 and Snail promoted cisplatin susceptibility and partially reversed epithelial-mesenchymal transition (EMT) in CP70 cells, while inhibition of miR-30a/c-5p or ectopic expression of DNMT1 and Snail induced cisplatin resistance and partial EMT in cisplatin-sensitive A2780 cells. Conclusions: A feedback loop between miR-30a/c-5p and DNMT1 is a potent signature for cisplatin-resistance and EMT in ovarian cancer, promising a potential target for improved anti-cancer treatment.

2020 ◽  
Author(s):  
Shenglan Wang ◽  
Chuanchuan Liu ◽  
Yongchuan Li ◽  
Jinwan Qiao ◽  
Xinling Chen ◽  
...  

Abstract Objectives: The purpose of this study was to investigate the expression and clinical significance of LncRNA OIP5-AS1 in ovarian cancer , as well as its effect on malignant biological behavior of ovarian cancer cells. Methods: The expression of OIP5-AS1, miR-153-3p and KLF5 in ovarian cancer (OC) tissues and cells were detected by RT-qPCR. Western Blotting was used to detect KLF5 expression. The expression patterns of OIP5-AS1, U6 and GAPDH in nuclear and cytoplasm fractions were detected using qRT-PCR. Besides, CCK-8 assay, clone formation assay, transwell, scratch test, and flow cytometry were respectively used to detect the cell activity, proliferation, invasiveness, healing of cells, and apoptosis rate of OC cells. Furthermore, The interaction between OIP5-AS1 and miR-153-3p and between miR-153-3p and KLF5 were verified by luciferase reporter assay, and the correlations among these three genes were analyzed.Results: OIP5-AS1 expression was up-regulated in ovarian cancer cell lines and tissues. Si-OIP5-AS1 inhibited cell proliferation, invasion and migration, and induced the apoptosis to a certain extent. Subcellular fraction assay revealed the location of OIP5-AS1 was mainly situated in the cytoplasm. In addition, miR-153-3p was a target of OIP5-AS1, and KLF5 was directly targeted by miR-153-3p. Si-OIP5-AS1 inhibited KLF5 expression, miR-153-3p inhibitor promoted KLF5 expression, and si-KLF5 inhibited OIP5-AS1 expression. Interestingly, expression of OIP5-AS1 and miR-153-3p, and expression of miR-153-3p and KLF5 were negatively correlated, while expression of OIP5-AS1 and KLF5 was positively correlated. In addition, si-KLF5 inhibited the malignant biological behavior of ovarian cancer cells, while miR-153-3p inhibitor had the opposite effect. Most importantly, the addition of si-OIP5-AS1 to mir-153-3p silenced cells could reverse the promotion effect of miR-153-3p inhibitor on the malignant biological behavior of ovarian cancer cells.Conclusions: OIP5-AS1 can be used as an effective prognostic indicator of ovarian cancer, which has the potential to be a new drug target.


2016 ◽  
Vol 40 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Suresh Bugide ◽  
Vijay Kumar Gonugunta ◽  
Vasudevarao Penugurti ◽  
Vijaya Lakshmi Malisetty ◽  
Ratna K. Vadlamudi ◽  
...  

2021 ◽  
Author(s):  
Shenglan Wang ◽  
Chuanchuan Liu ◽  
Yongchuan Li ◽  
Jinwan Qiao ◽  
Xinling Chen ◽  
...  

Abstract Objectives: This study was to investigate the expression and clinical significance of long intergenic noncoding RNA 00665 (LINC00665) in ovarian cancer , as well as its effect on malignant biological behavior of ovarian cancer cells. Methods: The expressions of LINC00665, miR-148b-3p and KLF5 in ovarian cancer (OC) tissues and cells were detected by RT-qPCR. Western blotting was used to detect KLF5 expression. The expression patterns of LINC00665, U6 and GAPDH in nuclear and cytoplasm fractions were detected using qRT-PCR. Besides, CCK-8 assay, clone formation assay, transwell, scratch test, and flow cytometry were respectively used to detect the cell activity, proliferation, invasiveness, healing of cells, and apoptosis rate of OC cells. Furthermore, the interactions between LINC00665 and miR-148b-3p and between miR-148b-3p and KLF5 were verified by luciferase reporter assay, and the correlations among these three genes were analyzed.Results: LINC00665 expression was up-regulated in ovarian cancer cell lines and tissues. Si-LINC00665 inhibited cell proliferation, invasion and migration, and induced the apoptosis to a certain extent. Subcellular fraction assay revealed the location of LINC00665 was mainly situated in the cytoplasm. Besides, miR-148b-3p was a target of LINC00665, and KLF5 was directly targeted by miR-148b-3p. Si-LINC00665 inhibited KLF5 expression, miR-148b-3p inhibitor promoted KLF5 expression, and si-KLF5 inhibited LINC00665 expression. Interestingly, expressions of LINC00665 and miR-148b-3p, and expressions of miR-148b-3p and KLF5 were negatively correlated, while expressions of LINC00665 and KLF5 were positively correlated. In addition, si-KLF5 inhibited the malignant biological behavior of ovarian cancer cells, while miR-148b-3p inhibitor had the opposite effect. Most importantly, the si-LINC00665 could reverse the promotion effect of miR-148b-3p inhibitor on the malignant biological behavior of ovarian cancer cells.Conclusions: LINC00665 can be used as an effective prognostic indicator of ovarian cancer, which has the potential to be a new drug target.


2020 ◽  
Author(s):  
Yujia Yang ◽  
Li Yuan ◽  
Bing Yang

Abstract Background: Ovarian cancer is one of the most common malignancy of the female reproductive system. Hsa‐miR‐15a‐5p (miR‐15a-5p) has been reported with tumor‐suppressing roles in various cancers. This study aims to determine the role of miR-15a-5p during the progression of ovarian cancer. Methods: We used bioinformatics, luciferase reporter assays, wound-healing, transwell invasion assays, quantitative Real-time polymerase chain reaction (qRT-PCR) and Western blot to dissect the molecular mechanism of how miR-15a-5p may cause metastasis in ovarian cancer. Results: The upregulation of miR‐15a-5p inhibited growth, migration and invasion in ovarian cancer cells. Furthermore, miR-15a-5p suppressed epithelial mesenchymal transition (EMT) of ovarian cancer cell in vitro, evidenced by expression alteration of E‐cadherin and vimentin. Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) was identified as the direct target of miR-15a-5p and downregulated by miR-15a-5p. The inhibitory effect of miR-15a-5p on migration, invasion and EMT was rescued by PELP1. Additionally, downregulation of PELP1 mimicked the suppressive impact of miR-15a-5p on ovarian carcinoma cells. Conclusions: Our data indicated that miR-15a-5p inhibited migration, invasion and EMT of ovarian cancer cells by targeting PELP1, which might relate to the progression and metastasis of ovarian cancer.


Oncotarget ◽  
2017 ◽  
Vol 8 (24) ◽  
pp. 39154-39166 ◽  
Author(s):  
Xiaolan Zhu ◽  
Huiling Shen ◽  
Xinming Yin ◽  
Lulu Long ◽  
Xiaofang Chen ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ping Li ◽  
Hongyan Xin ◽  
Lili Lu

Abstract Background Recent studies have suggested a crucial role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in ovarian cancer treatment. We, therefore, set out to explore the mechanism through which MSC-derived EVs delivered microRNA-424 (miR-424) to influence the development of ovarian cancer. Methods Bioinformatics analyses were first performed to screen ovarian cancer-related differentially expressed genes and to predict regulatory miRNAs. Then, dual-luciferase reporter gene assay was carried out to verify the relationship between miR-424 and MYB. Subsequently, the characterized MSCs and isolated EVs were co-cultured with ovarian cancer cells, followed by determination of the expression patterns of miR-424, MYB, vascular endothelial growth factor (VEGF), and VEGF receptor (VEGFR), respectively. In addition, the effects of EVs-delivered miR-424 on the proliferation, migration, invasion and tube formation of ovarian cancer cells were assessed using gain- and loss-of-function approaches. Lastly, tumor xenograft was induced in nude mice to illustrate the influence of EVs-loaded miR-424 on ovarian cancer in vivo. Results Our data exhibited that MYB was highly-expressed and miR-424 was poorly-expressed in ovarian cancer. More importantly, MYB was identified as a target gene of miR-424. Additionally, the transfer of miR-424 by MSC-derived EVs was found to repress the proliferation, migration, and invasion of ovarian cancer cells, with a reduction in the expressions of VEGF and VEGFR. Furthermore, MSC-derived EVs over-expressing miR-424 could inhibit the proliferation, migration, and tube formation of human umbilical vein endothelial cells, and also suppressed tumorigenesis and angiogenesis of ovarian tumors in vivo. Conclusion Collectively, our findings indicate that MSC-derived EVs transfer miR-424 to down-regulate MYB, which ultimately led to the inhibition of the tumorigenesis and angiogenesis of ovarian cancer. Hence, this study offers a potential prognostic marker and a therapeutic target for ovarian cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hao Xu ◽  
Yuan Ding ◽  
Xiangying Yang

Objective. The abnormal expression of LncRNA H19 and miR-140-5p has been linked to ovarian cancer (OC). Whether H19 directly regulates miR-140-5p in ovarian cancer cells has been unclear. In this study, we deeply explored the relationship between H19 and miR-140-5p in ovarian cancer and the mechanism of action in regulating OC progression. Methods. A total of 66 patients with OC admitted to the hospital from June 2017 to June 2019 were selected as the research group (RG), and meanwhile, 60 cases of healthy subjects were selected as the control group (CG). In addition, OC cells and normal ovarian epithelial cells were used to detect H19 and miR-140-5p expression levels and to analyze the effect of H19 on OC cells. The activation of the PI3K/AKT pathway and downstream proteins were analyzed by western blot. Results. H19 was highly expressed while miR-140-5p was lowly expressed in OC patients and cell lines ( P < 0.050 ). The proliferation, invasion, migration ability, and epithelial-mesenchymal transition (EMT) of OC cells were reduced after inhibiting H19 expression, and the apoptosis rate was increased. Transfection of cells with miR-140-5p mimics brought opposite effects. Online prediction and dual-luciferase reporter (DLR) confirmed that H19 directly binds miR-140-5p. Western blot assay indicated overexpression activated the PI3K/AKT signaling pathway in OC cells. Moreover, overexpression promoted tumor growth in nude mice and was suppressed by PI3K inhibitor. Conclusion. LncRNA H19 downregulation of miR-140-5p to activate the PI3K/AKT signaling pathway and promote the proliferation, invasion, migration and EMT of OC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lijun Wang ◽  
Fei Zhao ◽  
Zhongqing Xiao ◽  
Liang Yao

Abstract Background Recently, the impact of microRNAs (miRNAs) and exosome on ovarian cancer has been assessed in many studies. We aim to explore the mechanism of exosomes transferring miR-205 in ovarian cancer, and confirm its diagnostic value in ovarian cancer. Methods The expression of miR-205 of ovarian cancer patients and healthy people was detected by RT-qPCR, and the diagnostic value of miR-205 was evaluated. The exosomes derived from SKOV3 cells were identified. Ovarian cancer SKOV3 donor cells and receptor cells were used to measure the proliferation, migration, invasion, apoptosis and cell cycle by a series of experiments. The binding site between miR-205 and vascular endothelial growth factor A (VEGFA) was evaluated by bioinformatics tool and dual-luciferase reporter gene assay. Results MiR-205 was up-regulated in ovarian cancer, and up-regulated miR-205 could enhance the risk of ovarian cancer and was one of its risk factors. After SKOV3 cells-derived exosomes were transiently introduced with miR-205 mimics, the cell proliferation, migration and invasion in ovarian cancer were elevated, the apoptosis of ovarian cancer cells was attenuated, and the epithelial–mesenchymal transition (EMT) protein E-cadherin was down-regulated, while Vimentin was elevated. VEGFA was identified to be a target gene of miR-205. Conclusion This study suggests that exosomes from donor ovarian cancer cell SKOV3 shuttled miR-205 could participate in the regulation of the proliferation, migration, invasion, apoptosis as well as EMT progression of receptor SKOV3 cells by targeting VEGFA.


Sign in / Sign up

Export Citation Format

Share Document