scholarly journals Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency

2017 ◽  
Vol 41 (4) ◽  
pp. 1649-1660 ◽  
Author(s):  
Paola Maura Tricarico ◽  
Alessandra Romeo ◽  
Rossella Gratton ◽  
Sergio Crovella ◽  
Fulvio Celsi

Background/Aims: Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. Methods: SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. Results: MVK mutants’ over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. Conclusions: We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation.

2012 ◽  
Vol 18 (35) ◽  
pp. 5746-5752 ◽  
Author(s):  
Annalisa Marcuzzi ◽  
Sergio Crovella ◽  
Lorenzo Monasta ◽  
Liza Vecchi Brumatti ◽  
Marco Gattorno ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Anton Petcherski ◽  
Uma Chandrachud ◽  
Elisabeth Butz ◽  
Madeleine Klein ◽  
Wen-Ning Zhao ◽  
...  

Alterations in the autophagosomal–lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal–lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52637 ◽  
Author(s):  
Lei Fang ◽  
Charles Hemion ◽  
David Goldblum ◽  
Peter Meyer ◽  
Selim Orgül ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Mazatulikhma Mat Zain Mat Zain ◽  
Nursyamila Shamsuddin ◽  
Mohd Shihabuddin Ahmad Noorden

Methamphetamine (METH) was reported to caused neurotoxicity and cell death, in vitro. Centella asiatica or ‘pegaga’ is a native tropical herb with antioxidant and neuroprotective activities. Although the effects of Centella asiatica against oxidative stress and neuronal cell death have been reported in previous studies, however, the potential effects of Centella asiatica against psychostimulant methamphetamine (METH) are limited. Therefore, this study was aimed to evaluate the effects of Centella asiatica extract (CAE) against METH on all-trans retinoic acid, RA-differentiated human neuroblastoma, SH-SY5Y cells. The RA-differentiated SH-SY5Y cells were used to resemble dopaminergic neuronal-like cells. Cell viability was quantitatively assessed by 3-(4,5-dimethylthiazol-2-yl)-2 tetrazolium bromide, MTS assay.  CAE at varying concentrations from 1pg/mL to 1mg/mL significantly decreased the viability of the undifferentiated SH-SY5Y cells in a concentration-dependent manner. At 1mg/mL of CAE, significantly increased the viability of differentiated SH-SY5Y cells. Meanwhile, CAE at 100µg/mL and 1mg/mL significantly reversed the METH-induced neuronal cell death. The results revealed that promising treatment of CAE on METH-induced neurotoxicity is mediated by its high content of asiaticoside, asiatic acid, madecassoside and madecassic acid. Taken together, this study may suggest CAE as a potential therapeutic treatment for METH-induced neurotoxicity, in vitro.


2021 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Young Min Oh ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Frouwkje A. Politiek ◽  
Hans R. Waterham

Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.


2012 ◽  
Vol 443 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Ayano Fukuhara ◽  
Mao Yamada ◽  
Ko Fujimori ◽  
Yuya Miyamoto ◽  
Toshihide Kusumoto ◽  
...  

L-PGDS [lipocalin-type PGD (prostaglandin D) synthase] is a dual-functional protein, acting as a PGD2-producing enzyme and a lipid transporter. L-PGDS is a member of the lipocalin superfamily and can bind a wide variety of lipophilic molecules. In the present study we demonstrate the protective effect of L-PGDS on H2O2-induced apoptosis in neuroblastoma cell line SH-SY5Y. L-PGDS expression was increased in H2O2-treated neuronal cells, and the L-PGDS level was highly associated with H2O2-induced apoptosis, indicating that L-PGDS protected the neuronal cells against H2O2-mediated cell death. A cell viability assay revealed that L-PGDS protected against H2O2-induced cell death in a concentration-dependent manner. Furthermore, the titration of free thiols in H2O2-treated L-PGDS revealed that H2O2 reacted with the thiol of Cys65 of L-PGDS. The MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight)-MS spectrum of H2O2-treated L-PGDS showed a 32 Da increase in the mass relative to that of the untreated protein, showing that the thiol was oxidized to sulfinic acid. The binding affinities of oxidized L-PGDS for lipophilic molecules were comparable with those of untreated L-PGDS. Taken together, these results demonstrate that L-PGDS protected against neuronal cell death by scavenging reactive oxygen species without losing its ligand-binding function. The novel function of L-PGDS could be useful for the suppression of oxidative stress-mediated neurodegenerative diseases.


2019 ◽  
Vol 20 (17) ◽  
pp. 4279 ◽  
Author(s):  
Jung-Mi Oh ◽  
Eunhee Kim ◽  
Sungkun Chun

Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.


Sign in / Sign up

Export Citation Format

Share Document