scholarly journals Acute Intravenous Infusion of Immunoglobulins Protects Against Myocardial Ischemia-Reperfusion Injury Through Inhibition of Caspase-3

2017 ◽  
Vol 42 (6) ◽  
pp. 2295-2306 ◽  
Author(s):  
Waleed Al-Herz ◽  
Fawzi Babiker

Background/Aims: To investigate the cardioprotective effects of intravenous immunoglobulins (IVIG) in rats subjected to regional myocardial ischemia reperfusion (I/R). Methods: Langendorff-perfused rat hearts were used in this study. Hearts subjected to regional ischemia served as a negative untreated control. The effects of IVIG pre- and post-ischemic treatment on left ventricular function, coronary vascular dynamics and contractility were assessed. IVIG were administered in either a low or high dose. The infarct size was determined using triphenyltetrazolium chloride and through biochemical assays using the measured creatine kinase and lactate dehydrogenase levels. Apoptosis was evaluated by the TUNEL assay, and the caspase-3 expression level was assessed by immunoblotting. The cytokine levels were measured by ELISA. Results: Low and high doses of immunoglobulins administered 2 hours before sacrifice, before the ischemic insult or at reperfusion resulted in a significant improvement in cardiac hemodynamics, coronary vascular dynamics and heart contractility. A significant decrease in the infarct size and cardiac enzymes was also evident compared to those in the control. IVIG administered as an infusion at reperfusion or pre-treatment resulted in a marked decrease in myocyte apoptosis, which was associated with decreased levels of caspase-3 expression in the supernatants of homogenized left ventricles. Infusion of IVIG both pre-ischemia and at reperfusion did not show the same protective effects. Conclusions: This study demonstrates a novel protection to the heart by low and high doses of IVIG given either pre- or post-ischemia.

2000 ◽  
Vol 279 (1) ◽  
pp. H329-H338 ◽  
Author(s):  
Feng Gao ◽  
Theodore A. Christopher ◽  
Bernard L. Lopez ◽  
Eitan Friedman ◽  
Guoping Cai ◽  
...  

The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 μmol/l) stimulated NO release (1.06 ± 0.19 nmol · min−1 · g−1, P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 ± 3.8 vs. 57 ± 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 ± 103 vs. 1,780 ± 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 ± 3.9 vs. 159 ± 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 ± 0.12 nmol · min−1 · g−1 vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ralf Erkens ◽  
Tatsiana Suvorava ◽  
Thomas R. Sutton ◽  
Bernadette O. Fernandez ◽  
Monika Mikus-Lelinska ◽  
...  

The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mingjie Zhou ◽  
Huanhuan Ren ◽  
Jichun Han ◽  
Wenjuan Wang ◽  
Qiusheng Zheng ◽  
...  

Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats.Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β(GSK-3β), phospho-GSK-3β(P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis.Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and±dp/dtmax, as well as increased the levels of SOD and P-GSK-3βand GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α.Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3βactivity in rats with I/R.


2016 ◽  
Vol 44 (03) ◽  
pp. 515-530 ◽  
Author(s):  
Chao Zeng ◽  
Hu Li ◽  
Zhiwen Fan ◽  
Lei Zhong ◽  
Zhen Guo ◽  
...  

Crocin, the main effective component of saffron, exerts protective effects against ischemia/reperfusion injury during strokes. However, the effects of crocin in myocardial ischemia/reperfusion injury, and the mechanisms involved, remain unknown. Pretreated with crocin for 7 days, C57BL/6N mice were subjected to 30 min of myocardial ischemia followed by 12[Formula: see text]h of reperfusion (for cardiac function and infarct size, cell apoptosis and necrosis). Neonatal mouse cardiomyocytes were subjected to 2 h of hypoxia followed by 4 h of reoxygenation. NMCM’s survival was assessed during hypoxia and reoxygenation in the presence or absence of the autophagy inhibitor 3-methyladenine or the inducer rapamycin. Western blotting was used to evaluate AMPK, Akt, and autophagy-related proteins. Autophagosome was observed using electron microscopy. In the in vivo experiment, crocin pretreatment significantly attenuated infarct size, myocardial apoptosis and necrosis, and improved left ventricular function following ischemia/reperfusion. In vitro data revealed that autophagy was induced during hypoxia, the levels of which were intensely elevated during reoxygenation. Crocin significantly promoted autophagy during ischemia, accompanied with the activation of AMPK. In contrast, crocin overtly inhibited autophagy during reperfusion, accompanied with Akt activation. Induction and inhibition of autophagy mitigated crocin induced protection against NMCMs injury during hypoxia and reoxygenation, respectively. Our data suggest that crocin demonstrated a myocardial protective effect via AMPK/mTOR and Akt/mTOR regulated autophagy against ischemia and reperfusion injury, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fengxia Lin ◽  
Luhua Xu ◽  
Meizhu Huang ◽  
Bin Deng ◽  
Weiwei Zhang ◽  
...  

Myocardial ischemia/reperfusion (I/R) injury is a clinically severe complication, which can cause high rates of disability and mortality particularly in patients with myocardial infarction, yet the molecular mechanisms underlying this process remain unclear. This study aimed to explore the protective effects of β-sitosterol against myocardial I/R injury and to elucidate the underlying molecular mechanisms. Our results showed that hypoxia/reoxygenation (H/R) treatment suppressed cell viability, induced cell apoptosis and reactive oxygen species production, increased caspase-3 and -9 activities, upregulated caspase-3 and -9 protein expressions, downregulated the Bcl-2 protein expression, and reduced the mitochondrial membrane potential. β-Sitosterol treatment attenuated H/R-induced cardiomyocyte injury. Moreover, β-sitosterol treatment counteracted the inhibitory effects of H/R treatment on the peroxisome proliferator-activated receptor gamma (PPARγ) expression and enhanced effects of H/R treatment on the NF-κB expression in cardiomyocytes. Furthermore, inhibition of PPARγ impaired the protective actions of β-sitosterol against H/R-induced cardiomyocyte injury. In the I/R rats, β-sitosterol treatment reduced the myocardial infarcted size and apoptosis, which was attenuated by the inhibition of PPARγ. In conclusion, our results demonstrate that β-sitosterol protected against in vitro H/R-induced cardiomyocyte injury and in vivo myocardial I/R injury. The β-sitosterol-mediated cardioprotective effects may involve the modulation of PPARγ/NF-κB signalling during myocardial I/R injury. Further studies are required to further explore the clinical application of β-sitosterol in the myocardial I/R injury.


2012 ◽  
Vol 302 (9) ◽  
pp. H1818-H1825 ◽  
Author(s):  
Wei Zhou ◽  
Yoshihiro Ko ◽  
Peyman Benharash ◽  
Kentaro Yamakawa ◽  
Sunny Patel ◽  
...  

Augmentation of cardiac sympathetic tone during myocardial ischemia has been shown to increase myocardial O2 demand and infarct size as well as induce arrhythmias. We have previously demonstrated that electroacupuncture (EA) inhibits the visceral sympathoexcitatory cardiovascular reflex. The purpose of this study was to determine the effects of EA on left ventricular (LV) function, O2 demand, infarct size, arrhythmogenesis, and in vivo cardiac norepinephrine (NE) release in a myocardial ischemia-reperfusion model. Anesthetized rabbits ( n = 36) underwent 30 min of left anterior descending coronary artery occlusion followed by 90 min of reperfusion. We evaluated myocardial O2 demand, infarct size, ventricular arrhythmias, and myocardial NE release using microdialysis under the following experimental conditions: 1) untreated, 2) EA at P5–6 acupoints, 3) sham acupuncture, 4) EA with pretreatment with naloxone (a nonselective opioid receptor antagonist), 5) EA with pretreatment with chelerythrine (a nonselective PKC inhibitor), and 6) EA with pretreatment with both naloxone and chelerythrine. Compared with the untreated and sham acupuncture groups, EA resulted in decreased O2 demand, myocardial NE concentration, and infarct size. Furthermore, the degree of ST segment elevation and severity of LV dysfunction and ventricular arrhythmias were all significantly decreased ( P < 0.05). The cardioprotective effects of EA were partially blocked by pretreatment with naloxone or chelerythrine alone and completely blocked by pretreatment with both naloxone and chelerythrine. These results suggest that the cardioprotective effects of EA against myocardial ischemia-reperfusion are mediated through inhibition of the cardiac sympathetic nervous system as well as opioid and PKC-dependent pathways.


2020 ◽  
Author(s):  
Xinhao Liu ◽  
Hui Chen ◽  
Zhibing Yan ◽  
Lei Du ◽  
Dou Huang ◽  
...  

Abstract BACKGROUND: Diabetes mellitus (DM) exhibits a higher sensitivity to myocardial ischemia/reperfusion(I/R)injury and may compromise the effectiveness of cardioprotective interventions, including ischemic preconditioning. We previously found that liver ischemic preconditioning(RLIPC) could limit infarct size post I/R in normal rat hearts and further exerted anti-arrhythmic effects in diabetic or non-diabetic rats after myocardial I/R, however, little is known regarding the effect of RLIPC on infarct-sparing in diabetic hearts. In this study, we evaluated the protective effects of RLIPC on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats.METHODS:Type 1 diabetes mellitus was induced by one-time intraperitoneal injection of streptozotocin in Sprague–Dawley rats. Rats were exposed to 45 min of left anterior descendin(LAD) coronary artery occlusion, followed by 3 h of reperfusion. For liver ischemic preconditioning, four cycles of 5 min of liver I/R stimuli were performed before LAD occlusion. the cardioprotective effect of RLIPC was determined in diabetic rats.RESULTS: Compared to non-RLIPC treated DM rats, RLIPC treatment significantly reduced infarct size in diabetic hearts post I/R. RLIPC also improved cardiac functions including LVESP, LVEDP, dp/dtmax, and -dp/dtmax. In addition, RLIPC could largely preserved cardiac morphology by reducing the pathological score post I/R in diabetic hearts. Finally, western blotting analysis showed that RLIPC stimulated phosphorylation of ventricular GSK-3β and STAT-5, which are key components of RISK and SAFE signaling pathways.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P&lt;0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P&lt;0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P&lt;0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P&lt;0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P&lt;0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P&lt;0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P&lt;0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P&lt;0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


2016 ◽  
Vol 38 (4) ◽  
pp. 1365-1375 ◽  
Author(s):  
Jie Jian ◽  
Feifei Xuan ◽  
Feizhang Qin ◽  
Renbin Huang

Background/Aims: Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. Methods: The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-κBp65, Bcl-2 and Bax were detected by western blotting. Results: Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-κBp65 and Bax, but enhanced the expression of Bcl-2. Conclusion: These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document