Parental Origin of the Retained X Chromosome in Monosomy X Miscarriages and Ongoing Pregnancies

2017 ◽  
Vol 45 (2) ◽  
pp. 118-124 ◽  
Author(s):  
Maribel Grande ◽  
Iosifina Stergiotou ◽  
Montse Pauta ◽  
Borja Marquès ◽  
Cèlia Badenas ◽  
...  
2019 ◽  
Vol 133 (1) ◽  
pp. 164-165 ◽  
Author(s):  
Guillermo Font ◽  
Xavier F. Pombar ◽  
Melissa Maisenbacher

2007 ◽  
Vol 92 (3) ◽  
pp. 846-852 ◽  
Author(s):  
Liora Sagi ◽  
Nehama Zuckerman-Levin ◽  
Aneta Gawlik ◽  
Lucia Ghizzoni ◽  
Atilla Buyukgebiz ◽  
...  

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 813-821 ◽  
Author(s):  
T. Tada ◽  
M. Tada ◽  
N. Takagi

A cytogenetic and biochemical study of balloon-like cystic embryoid bodies, formed by newly established embryonic stem (ES) cell lines having a cytogenetically or genetically marked X chromosome, revealed that the paternally derived X chromosome was inactivated in the majority of cells in the yolk sac-like mural region consisting of the visceral endoderm and mesoderm. The nonrandomness was less evident in the more solid polar region containing the ectodermal vesicle, mesoderm and visceral endoderm. Since the same was true in embryoid bodies derived from ES cells at the 30th subculture generation, it was concluded that the imprinting responsible for the preferential inactivation of the paternal X chromosome that was limited to non-epiblast cells of the female mouse embryos, was stably maintained in undifferentiated ES cells. Differentiating epiblast cells should be able to erase or avoid responding to the imprint.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1411-1419 ◽  
Author(s):  
George L. Chen ◽  
Josef T. Prchal

Abstract Clonality often defines the diseased state in hematology. Clonal cells are genetically homogenous and derived from the same precursor; their detection is based on genotype or phenotype. Genotypic clonality relies on somatic mutations to mark the clonal population. Phenotypic clonality identifies the clonal population by the expression pattern of surrogate genes that track the clonal process. The most commonly used phenotypic clonality methods are based on the X-chromosome inactivation principle. Clonality detection based on X-chromosome inactivation patterns (XCIP) requires discrimination of the active from the inactive X chromosome and differentiation of each X chromosome's parental origin. Detection methods are based on detection of X-chromosome sequence polymorphisms identified by protein isoforms, transcribed mRNA, and methylation status. Errors in interpreting clonality tests arise from stochastic, genetic, and cell selection pressures on the mechanism of X inactivation. Progressive X-chromosome skewing has recently been suggested by XCIP clonality studies in aging hematopoietic cells. This has led to new insights into the pathophysiology of X-linked and autoimmune disorders. Other research applications include combining XCIP clonality testing with genetic clonality testing to identify clonal populations with yet-to-be-discovered genetic changes.


2017 ◽  
Vol 372 (1733) ◽  
pp. 20160365 ◽  
Author(s):  
Takashi Sado

In the mouse, while either X chromosome is chosen for inactivation in a random fashion in the embryonic tissue, the paternally derived X chromosome is preferentially inactivated in the extraembryonic tissues. It has been shown that the maternal X chromosome is imprinted so as not to undergo inactivation in the extraembryonic tissues. X-linked noncoding Xist RNA becomes upregulated on the X chromosome that is to be inactivated. An antisense noncoding RNA, Tsix , which occurs at the Xist locus and has been shown to negatively regulate Xist expression in cis, is imprinted to be expressed from the maternal X in the extraembryonic tissues. Although Tsix appears to be responsible for the imprint laid on the maternal X, those who disagree with this idea would point out the fact that Tsix has not yet been expressed from the maternal X when Xist becomes upregulated on the paternal but not the maternal X at the onset of imprinted X-inactivation in preimplantation embryos. Recent studies have demonstrated, however, that there is a prominent difference in the chromatin structure at the Xist locus depending on the parental origin, which I suggest might account for the repression of maternal Xist in the absence of maternal Tsix at the preimplantation stages. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


Development ◽  
1988 ◽  
Vol 104 (2) ◽  
pp. 235-244
Author(s):  
A. Collick ◽  
W. Reik ◽  
S.C. Barton ◽  
A.H. Surani

The process of X-inactivation in mammals requires at least two events, the initiation of inactivation and the maintenance of the inactive state. One possible mechanism of control is by methylation of DNA at CpG dinucleotides to maintain the inactive state. Furthermore, the paternal X-chromosome is frequently inactivated in the extraembryonic membranes. The relationship between the parental origin of the chromosome, nonrandom inactivation and DNA methylation is not clear. In this paper, we report on the CpG methylation of an X-linked transgene, CAT-32. The levels of methylation in embryonic, extraembryonic and germline cells indicates that the modifications of the transgene are broadly similar to those reported for endogenous X-linked genes. Interestingly, the methylation of CAT-32 transgene in extraembryonic tissues displays patterns that could be linked to the germline origin of each allele. Hence, the maternally derived copy of CAT-32 was relatively undermethylated when compared to the paternal one. The changes in DNA methylation were attributed to de novo methylation occurring after fertilization, most probably during differentiation of extraembryonic tissues. In order to determine whether or not the patterns of DNA methylation reflected the germline origin of the X-chromosome, we constructed triploid embryos specifically to introduce two maternal X-chromosomes in the same embryo. In some of these triploid conceptuses, methylation patterns characteristic of the paternally derived transgene were observed. This observation indicates that the methylation patterns are not necessarily dependent on the parental origin of the X-chromosome, but could be changed by somatic events after fertilization. One of the more likely mechanisms is methylation of the transgene following inactivation of the X-chromosome in extraembryonic tissues.


1992 ◽  
Vol 29 (8) ◽  
pp. 595-596 ◽  
Author(s):  
D David ◽  
R A Marques ◽  
M H Carreiro ◽  
I Moreira ◽  
M G Boavida
Keyword(s):  

2008 ◽  
Vol 48 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Torben Larsen ◽  
Claus Højbjerg Gravholt ◽  
Annette Tillebeck ◽  
Hanne Larsen ◽  
Marianne Bryder Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document