scholarly journals Are We Ready to Use ESR1 Mutations in Clinical Practice

Breast Care ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. 309-313 ◽  
Author(s):  
Rinath Jeselsohn

The recurrent ligand-binding domain ESR1 mutations are an important mechanism of endocrine resistance in estrogen receptor-positive (ER+) metastatic breast cancer. These mutations evolve under the selective pressure of endocrine treatments and are rarely found in treatment-naïve ER+ breast cancers. Preclinical studies showed that these mutations lead to ligand-independent activity facilitating resistance to aromatase inhibitors and relative resistance to tamoxifen and fulvestrant. Retrospective analyses of ESR1 mutations in baseline plasma circulating tumor DNA from clinical trials suggest that these mutations are prognostic of poor overall survival and predictive of resistance to aromatase inhibitors in metastatic disease. Larger datasets and prospective studies to confirm these results are lacking. In addition, response to other standard treatments for metastatic breast cancer in the presence of the ESR1 mutations is unknown, and studies to determine the optimal treatment combinations for patients with ESR1 mutations are also needed.

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1894 ◽  
Author(s):  
Irene De Santo ◽  
Amelia McCartney ◽  
Ilenia Migliaccio ◽  
Angelo Di Leo ◽  
Luca Malorni

Mutations in the hotspot ligand-binding domain of the estrogen receptor (ER) gene ESR1 have recently been recognized as mechanisms of endocrine resistance in endocrine receptor-positive metastatic breast cancer (MBC). Accumulating data suggest these mutations develop under the selective pressure of endocrine treatments, and are infrequent in untreated ER-positive breast cancers. In vitro studies show that these mutations confer ligand-independent activity, resistance to estrogen deprivation, and relative resistance to tamoxifen and fulvestrant. Post-hoc retrospective and prospective analyses of ESR1 mutations in patients with MBC have consistently found that these mutations are markers of poor prognosis and predict resistance to aromatase inhibitors (AIs). These results warrant further investigation and prospective validation in dedicated studies. Moreover, studies are ongoing to clarify the activity of novel drugs in the context of metastatic endocrine resistant luminal breast cancer harboring ESR1 mutations. In this review, we summarize the pre-clinical and clinical findings defining the characteristics of ESR1 mutant breast cancer, and highlight the potential clinical developments in this field.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 512-512 ◽  
Author(s):  
Nicholas C. Turner ◽  
Yuqiu Jiang ◽  
Ben O'Leary ◽  
Sarah Hrebien ◽  
Massimo Cristofanilli ◽  
...  

2021 ◽  
pp. 1768-1776
Author(s):  
Karen Page ◽  
Luke J. Martinson ◽  
Daniel Fernandez-Garcia ◽  
Allison Hills ◽  
Kelly L. T. Gleason ◽  
...  

PURPOSE We investigated the utility of the Oncomine Breast cfDNA Assay for detecting circulating tumor DNA (ctDNA) in women from a breast screening population, including healthy women with no abnormality detected by mammogram, and women on follow-up through to advanced breast cancer. MATERIALS AND METHODS Blood samples were taken from 373 women (127 healthy controls recruited through breast screening, 28 ductal carcinoma in situ, 60 primary breast cancers, 47 primary breast cancer on follow-up, and 111 metastatic breast cancers [MBC]) to recover plasma and germline DNA for analysis with the Oncomine Breast cfDNA Assay on the Ion S5 platform. RESULTS One hundred sixteen of 373 plasma samples had one or more somatic variants detected across eight of the 10 genes and were called ctDNA-positive; MBC had the highest proportion of ctDNA-positive samples (61; 55%) and healthy controls the lowest (20; 15.7%). ESR1, TP53, and PIK3CA mutations account for 93% of all variants detected and predict poor overall survival in MBC (hazard ratio = 3.461; 95% CI, 1.866 to 6.42; P = .001). Patients with MBC had higher plasma cell-free DNA levels, higher variant allele frequencies, and more polyclonal variants, notably in ESR1 than in all other groups. Only 15 individuals had evidence of potential clonal hematopoiesis of indeterminate potential mutations. CONCLUSION We were able detect ctDNA across the breast cancer spectrum, notably in MBC where variants in ESR1, TP53, and PIK3CA predicted poor overall survival. The assay could be used to monitor emergence of resistance mutations such as in ESR1 that herald resistance to aromatase inhibitors to tailor adjuvant therapies. However, we suggest caution is needed when interpreting results from a single plasma sample as variants were also detected in a small proportion of HCs.


2019 ◽  
Author(s):  
Angélica Santiago-Gómez ◽  
Ilaria Dragoni ◽  
Roisin NicAmhlaoibh ◽  
Elisabeth Trivier ◽  
Verity Sabin ◽  
...  

AbstractDespite the effectiveness of endocrine therapies to treat estrogen receptor-positive (ER+) breast tumours, two thirds of patients will eventually relapse due tode novoor acquired resistance to these agents. Cancer Stem-like Cells (CSCs), a rare cell population within the tumour, accumulate after anti-estrogen treatments and are likely to contribute to their failure. Here we studied the role of p21-activated kinase 4 (PAK4) as a promising target to overcome endocrine resistance and disease progression in ER+ breast cancers. PAK4 predicts for resistance to tamoxifen and poor prognosis in 2 independent cohorts of ER+ tumours. We observed that PAK4 strongly correlates with CSC activity in metastatic patient-derived samples irrespective of breast cancer subtype. However, PAK4-driven mammosphere-forming CSC activity increases alongside progression only in ER+ metastatic samples. PAK4 activity increases in ER+ models during acquired resistance to endocrine therapies. Targeting PAK4 with either CRT PAKi, a small molecule inhibitor of PAK4, or with specific siRNAs abrogates CSC activity/self-renewal in clinical samples and endocrine-resistant cells. Together, our findings establish that PAK4 regulates stemness during disease progression and that its inhibition reverses endocrine resistance in ER+ breast cancers.HighlightsPAK4 predicts for failure of endocrine therapies and poor prognosisPAK4 drives stemness and progression in ER+ metastatic breast cancerTargeting PAK4 abrogates breast CSC activity and restores sensitivity to endocrine treatmentsTargeting PAK4 will improve outcome of ER+ breast cancer patientsList of Abbreviations that appeared in abstractCancer Stem-like Cells (CSCs)p21-activated kinase 4 (PAK4)Estrogen Receptor (ER)


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1331
Author(s):  
Adriana Aguilar-Mahecha ◽  
Josiane Lafleur ◽  
Susie Brousse ◽  
Olga Savichtcheva ◽  
Kimberly A. Holden ◽  
...  

Background: Circulating tumor DNA (ctDNA) offers high sensitivity and specificity in metastatic cancer. However, many ctDNA assays rely on specific mutations in recurrent genes or require the sequencing of tumor tissue, difficult to do in a metastatic disease. The purpose of this study was to define the predictive and prognostic values of the whole-genome sequencing (WGS) of ctDNA in metastatic breast cancer (MBC). Methods: Plasma from 25 patients with MBC were taken at the baseline, prior to treatment (T0), one week (T1) and two weeks (T2) after treatment initiation and subjected to low-pass WGS. DNA copy number changes were used to calculate a Genomic Instability Number (GIN). A minimum predefined GIN value of 170 indicated detectable ctDNA. GIN values were correlated with the treatment response at three and six months by Response Evaluation Criteria in Solid Tumours assessed by imaging (RECIST) criteria and with overall survival (OS). Results: GIN values were detectable (>170) in 64% of patients at the baseline and were significantly prognostic (41 vs. 18 months OS for nondetectable vs. detectable GIN). Detectable GIN values at T1 and T2 were significantly associated with poor OS. Declines in GIN at T1 and T2 of > 50% compared to the baseline were associated with three-month response and, in the case of T1, with OS. On the other hand, a rise in GIN at T2 was associated with a poor response at three months. Conclusions: Very early measurements using WGS of cell-free DNA (cfDNA) from the plasma of MBC patients provided a tumor biopsy-free approach to ctDNA measurement that was both predictive of the early tumor response at three months and prognostic.


Sign in / Sign up

Export Citation Format

Share Document