scholarly journals Benzotriazole Enhances Cell Invasive Potency in Endometrial Carcinoma Through CTBP1-Mediated Epithelial-Mesenchymal Transition

2017 ◽  
Vol 44 (6) ◽  
pp. 2357-2367 ◽  
Author(s):  
Yiquan Wang ◽  
Chencheng Dai ◽  
Cheng Zhou ◽  
Wenqu Li ◽  
Yujia Qian ◽  
...  

Background/Aims: Benzotriazole (BTR) and its derivatives, such as intermediates and UV stabilizers, are important man-made organic chemicals found in everyday life that have been recently identified as environmental toxins and a threat to female reproductive health. Previous studies have shown that BTR could act as a carcinogen by mimicking estrogen. Environmental estrogen mimics could promote the initiation and development of female cancers, such as endometrial carcinoma, a type of estrogenic-sensitive malignancy. However, there is little information on the relationship between BTR and endometrial carcinoma. In this study, we aimed to demonstrate the biological function of BTR in endometrial carcinoma and explored the underlying mechanism. Methods: The CCK-8 assay was performed to detect cell viability; transwell-filter assay was used to assess cell invasion; gene microarray analysis was employed to determine gene expression patterns in response to BTR treatment; western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were carried out to detect the expression levels of BTR-related genes. Results: Our data showed that BTR could induce the invasion and migration of endometrial carcinoma cells (Ishikawa and HEC-1-B). In addition, BTR increased the expression level of CTBP1, which could enhance the epithelial-mesenchymal transition (EMT) in cancer cells. Moreover, CTBP1 silencing reversed the effect of BTR on EMT progression in endometrial carcinoma cells. Conclusion: This study indicates that BTR could act as a carcinogen to promote the development of endometrial carcinoma mainly through CTBP1-mediated EMT, which deserves more attention.

Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770575 ◽  
Author(s):  
Yuan Shen ◽  
Shanshan Liu ◽  
Hanyu Yuan ◽  
Xiaomin Ying ◽  
Hanjiang Fu ◽  
...  

Long non-coding RNAs have been revealed to play important roles in the progression of hepatocellular carcinoma. However, the detailed mechanisms underlying their activities are not fully understood. Using microarray technology, a number of long non-coding RNAs were previously identified to be aberrantly expressed in hepatocellular carcinoma. In this study, one of these long non-coding RNAs, designated lncRNA-PE (lncRNA promotes epithelial–mesenchymal transition), was further explored to study its expression profile and function. A cohort of human hepatocellular carcinoma tissue samples combined with benign controls and established human hepatocellular carcinoma cell lines were examined for the expression of lncRNA-PE. The biological functions of lncRNA-PE were examined by wound-healing and Transwell assays, which revealed that lncRNA-PE promotes cell invasion and migration. By detecting the level of epithelial–mesenchymal transition markers, lncRNA-PE was revealed to promote epithelial–mesenchymal transition in hepatocellular carcinoma cells. Further study suggested that lncRNA-PE downregulated miR-200a/b by repressing the primary transcript expression, enhanced ZEB1 expression, and promoted epithelial–mesenchymal transition of hepatocellular carcinoma cells. All these data imply that lncRNA-PE might play an important role in hepatocellular carcinoma development via the miR-200a/b-ZEB1 pathway.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 805-815
Author(s):  
Cong Feng ◽  
Yan-Hua Han ◽  
Na Qi ◽  
Jia Li ◽  
Qing-Hua Sheng ◽  
...  

Abstract This research aimed to probe the expression characteristics of poly(A)-binding protein cytoplasmic 1 (PABPC1) and its role on the phenotype of ovarian cancer (OC) cells and to further investigate the possible underlying mechanism. The expression of PABPC1 was analyzed according to the data from gene expression omnibus, The Cancer Genome Atlas (TCGA) and Oncomine databases and the RNA sequencing data set from TCGA were downloaded for evaluating the prognostic values. We revealed that compared with the healthy samples, PABPC1 was upregulated in OC samples. High expression of PABPC1 had a connection with a shorter survival for patients with OC. Loss and gain of function assays revealed that silencing PABPC1 significantly suppressed the viability, invasion and migration of SK-OV-3 cells, while PABPC1 overexpression in A2780 cells showed the reverse outcomes. Moreover, Western blot demonstrated that silencing PABPC1 notably inactivated the epithelial–mesenchymal transition (EMT) process, while upregulation of PABPC1 promoted the mitigation of epithelial phenotype and the acquisition of mesenchymal phenotype. Taken together, PABPC1 was upregulated in OC cells and served as a carcinogene to promote the OC cell growth and invasion partly by modulating the EMT process, which implied that PABPC1 might be considered as a useful biomarker for OC therapeutics.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xin Xu ◽  
Haomin Yan ◽  
Le Zhang ◽  
Jing Liu ◽  
Yu Huang ◽  
...  

Abstract Objective: To explore the correlation between miR-34c-5p and NOTCH1 in nasopharyngeal carcinoma (NPC). Materials and methods: qPCR was employed to quantify miR-34c-5p and NOTCH1 mRNA in NPC, and Western blot to detect NOTCH1. MiR-34c-5p mimics/inhibitor and NOTCH1 siRNA were constructed to analyze the role of miR-34c-5p/NOTCH1 on the biological function of NPC cells. Results: NPC cells showed lower miR-34c-5p expression and higher NOTCH1 expression than normal cells, and up-regulating miR-34c-5p or inhibiting NOTCH1 could strongly suppress the epithelial–mesenchymal transition (EMT), proliferation, invasion and migration of NPC cells, and induce apoptosis in them. Up-regulating miR-34c-5p could inhibit NOTCH1, and miR-34c-5p was negatively correlated with NOTCH1. Rescue experiment results revealed that NOTCH1 up-regulation could counteract the changes of cell process induced by increased miR-34c-5p. Conclusion: MiR-34c-5p inhibits the growth of NPC by down-regulating NOTCH1, so up-regulating miR-34c-5p or down-regulating NOTCH1 may become the potential direction of NPC treatment.


Sign in / Sign up

Export Citation Format

Share Document