scholarly journals The Electrical Brain Activity in Men with Different Alpha-Rhythm Characteristics during Manual Movements Executed by the Subdominant Hand

2018 ◽  
Vol 25 (2) ◽  
pp. 98-104
Author(s):  
Olga Korzhyk ◽  
Olena Morenko ◽  
Alevtyna Morenko ◽  
Ihor Kotsan
2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


1981 ◽  
Vol 20 (03) ◽  
pp. 169-173
Author(s):  
J. Wagner ◽  
G. Pfurtscheixer

The shape, latency and amplitude of changes in electrical brain activity related to a stimulus (Evoked Potential) depend both on the stimulus parameters and on the background EEG at the time of stimulation. An adaptive, learnable stimulation system is introduced, whereby the subject is stimulated (e.g. with light), whenever the EEG power is subthreshold and minimal. Additionally, the system is conceived in such a way that a certain number of stimuli could be given within a particular time interval. Related to this time criterion, the threshold specific for each subject is calculated at the beginning of the experiment (preprocessing) and adapted to the EEG power during the processing mode because of long-time fluctuations and trends in the EEG. The process of adaptation is directed by a table which contains the necessary correction numbers for the threshold. Experiences of the stimulation system are reflected in an automatic correction of this table. Because the corrected and improved table is stored after each experiment and is used as the starting table for the next experiment, the system >learns<. The system introduced here can be used both for evoked response studies and for alpha-feedback experiments.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gonzalo Rivera-Lillo ◽  
Emmanuel A. Stamatakis ◽  
Tristan A. Bekinschtein ◽  
David K. Menon ◽  
Srivas Chennu

AbstractThe overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands. We combined evidence from behavioural assessment, functional neuroimaging during mental imagery and high-density electroencephalography collected during auditory prediction, from 21 patients and 10 controls. We used a penalised regression model to identify command following using features from electroencephalography. We identified seven well-defined spatiotemporal signatures in the delta, theta and alpha bands that together contribute to identify DoC subjects with and without the ability to follow command, and further distinguished these groups of patients from controls. A fine-grained analysis of these seven signatures enabled us to determine that increased delta modulation at the frontal sensors was the main feature in command following patients. In contrast, higher frequency theta and alpha modulations differentiated controls from both groups of patients. Our findings highlight a key role of spatiotemporally specific delta modulation in supporting cortically mediated behaviour including the ability to follow command. However, patients able to follow commands nevertheless have marked differences in brain activity in comparison with healthy volunteers.


1985 ◽  
Vol 51 (4) ◽  
pp. 239-247 ◽  
Author(s):  
P. J. Franaszczuk ◽  
K. J. Blinowska ◽  
M. Kowalczyk

1982 ◽  
Vol 90 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Ilmari Pyykkö ◽  
Izuru Matsuoka ◽  
Shinsuke Ito ◽  
Manabe Hinoki

The relationship between electroencephalogram (EEG) and eye movements was studied in rabbits during optokinetic, vestibular, and optovestibular tests. EEG was recorded through permanently implanted electrodes. Exposure to noise and vibration increased the frequency and the velocity of optokinetic nystagmus (OKN). The increase was greater during vibration but greatest during combined noise and vibration. EEG activity was closely linked to changes in OKN and was particularly evident with the appearance of theta waves in the dorsal hippocampus. Also, rotation of the rabbit produced considerable activation in the EEG.


2019 ◽  
Author(s):  
Berry van den Berg ◽  
Marlon de Jong ◽  
Marty G. Woldorff ◽  
Monicque M. Lorist

AbstractBoth the intake of caffeine-containing substances and the prospect of reward for performing a cognitive task have been associated with improved behavioral performance. To investigate the possible common and interactive influences of caffeine and reward-prospect on preparatory attention, we tested 24 participants during a 2-session experiment in which they performed a cued-reward color-word Stroop task. On each trial, participants were presented with a cue to inform them whether they had to prepare for presentation of a Stroop stimulus and whether they could receive a reward if they performed well on that trial. Prior to each session, participants received either coffee with caffeine (3 mg/kg bodyweight) or with placebo (3 mg/kg bodyweight lactose). In addition to behavioral measures, electroencephalography (EEG) measures of electrical brain activity were recorded. Results showed that both the intake of caffeine and the prospect of reward improved speed and accuracy, with the effects of caffeine and reward-prospect being additive on performance. Neurally, reward-prospect resulted in an enlarged contingent negative variation (CNV) and reduced posterior alpha power (indicating increased cortical activity), both hallmark neural markers for preparatory attention. Moreover, the CNV enhancement for reward-prospect trials was considerably more pronounced in the caffeine condition as compared to the placebo condition. These results thus suggest that caffeine intake boosts preparatory attention for task-relevant information, especially when performance on that task can lead to reward.


Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
K.D. Walton ◽  
...  

New method for the magnetic encephalography data analysis was proposed. The method transforms multichannel time series into the spatial structure of the human brain activity. In this paper we further develop this method to determine the dominant direction of the electrical sources of brain activity at each node of the calculation grid. We have considered the experimental data, obtained with three 275-channel magnetic encephalographs in New York University, McGill University and Montreal University. The human alpha rhythm phenomenon was selected as a model object. Magnetic encephalograms of the brain spontaneous activity were registered for 5-7 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the frequency band 8-12 Hz. In order to estimate the local activity direction, at the each node of calculation grid the vector of the inverse problem solution was selected, having the maximal spectral power. So, the 3D-map of the brain activity vector field was produced – the directional functional tomogram. Such maps were generated for 15 subjects and some common patterns were revealed in the directions of the alpha rhythm elementary sources. The proposed method can be used to study the local properties of the brain activity in any spectral band and in any brain compartment.


2019 ◽  
Author(s):  
Nadine Farnes ◽  
Bjørn E. Juel ◽  
André S. Nilsen ◽  
Luis G. Romundstad ◽  
Johan F. Storm

AbstractObjectiveHow and to what extent electrical brain activity is affected in pharmacologically altered states of consciousness, where it is mainly the phenomenological content rather than the level of consciousness that is altered, is not well understood. An example is the moderately psychedelic state caused by low doses of ketamine. Therefore, we investigated whether and how measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective assessments of consciousness.MethodsHigh-density electroencephalography (EEG, 62 channels) was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and after administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from the global EEG responses to local TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE).ResultsAlthough no significant difference was found in the index of TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all the three measures of spontaneous EEG signal diversity showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity also correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine doses.ConclusionThe results suggest that PCI and spontaneous signal diversity may be complementary and potentially measure different aspects of consciousness. Thus, our results seem compatible with PCI being indicative of the brain’s ability to sustain consciousness, as indicated by previous research, while it is possible that spontaneous EEG signal diversity may be indicative of the complexity of conscious content. The observed sensitivity of the latter measures to visual input seems to support such an interpretation. Thus, sub-anaesthetic ketamine may increase the complexity of both the conscious content (experience) and the brain activity underlying it, while the level, degree, or general capacity of consciousness remains largely unaffected.


Sign in / Sign up

Export Citation Format

Share Document