Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae)

2018 ◽  
Vol 154 (2) ◽  
pp. 86-98
Author(s):  
Michael Schmid ◽  
Claus Steinlein

A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei.

2019 ◽  
Vol 158 (3) ◽  
pp. 160-169 ◽  
Author(s):  
LingSze Lee ◽  
Eugenia E. Montiel ◽  
Nicole Valenzuela

The discovery of sex chromosome systems in non-model organisms has elicited growing recognition that sex chromosomes evolved via diverse paths that are not fully elucidated. Lineages with labile sex determination, such as turtles, hold critical cues, yet data are skewed toward hide-neck turtles (suborder Cryptodira) and scant for side-neck turtles (suborder Pleurodira). Here, we used classic and molecular cytogenetics to investigate Emydura subglobosa (ESU), an unstudied side-neck turtle with genotypic sex determination from the family Chelidae, where extensive morphological divergence exists among XX/XY systems. Our data represent the first cytogenetic description for ESU. Similarities were found between ESU and E. macquarii (EMA), such as identical chromosome number (2n = 50), a single and dimorphic nucleolus organizer region (NOR) localized in a microchromosome pair (ESU14) of both sexes (detected via FISH of 18S rDNA). Only the larger NOR is active (detected by silver staining). As in EMA, comparative genome hybridization revealed putative macro XX/XY chromosomes in ESU (the 4th largest pair). Our comparative analyses and revaluation of previous data strongly support the hypothesis that Emydura's XX/XY system evolved via fusion of an ancestral micro-Y (retained by Chelodina longicollis) onto a macro-autosome. This evolutionary trajectory differs from the purported independent evolution of XX/XY from separate ancestral autosomes in Chelodina and Emydura that was previously reported. Our data permit dating this Y-autosome fusion to at least the split of Emydura around 45 Mya and add critical information about the evolution of the remarkable diversity of sex-determining mechanisms in turtles, reptiles, and vertebrates.


Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 127-133
Author(s):  
Fernanda Dotti do Prado ◽  
Andrea Abrigato de Freitas Mourão ◽  
Fausto Foresti ◽  
José Augusto Senhorini ◽  
Fabio Porto-Foresti

This study reports the first cytogenetic characterization of the Amazonian catfish Leiarius marmoratus (“jandiá”) and its F1 (first generation) hybrid “cachandiá” with Pseudoplatystoma reticulatum (“cachara”). A diploid number of 56 chromosomes and a single argyrophilic nucleolus organizer region (Ag-NOR) in the short arm of two sub-telocentric chromosomes were observed for both L. marmoratus and P. reticulatum, but with differences in the karyotype formula and the size of the chromosome pair with NORs. The hybrid showed 2n = 56 chromosomes with an intermediate karyotype when compared to the parental species. A single Ag-NOR was maintained in the hybrid but located in two chromosomes with marked differences in size and presenting intraindividual variation in NOR activity (nucleolar dominance). For L. marmoratus and the hybrid, heterochromatic bands were predominately distributed in the terminal, centromeric, and sub-centromeric regions of some chromosomes and 5S rDNA sites located in two distinct sub-telocentric chromosomes, similar to the previously described for P. reticulatum. The data suggested that the hybrid karyotype might be insufficient for a precise discrimination of hybrids, however, Ag-NOR can be used as a chromosome marker to differentiate “cachandiá” from L. marmoratus and P. reticulatum. The current study also provides insights into the chromosomal features of L. marmoratus and contributes with novel cytogenetic information of this native Amazonian catfish included in the Pimelodidae family.


Botany ◽  
2016 ◽  
Vol 94 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Guilherme M.A. Carvalho ◽  
Carlos R. Carvalho

The genus Eucalyptus L’Herit. is the most cytologically studied group of plants in the family Myrtaceae. Despite the ecological and economic importance of this genus, much of its biology remains poorly understood. Cytological methods are useful in evolutionary studies; however, karyomorphological descriptions of the Eucalyptus species are limited. In this study, we developed a cytogenetic methodology that facilitates karyogram assembly and chromosome classification of Eucalyptus citriodora. The protocol includes treatment of root tips with amiprophos-methyl in Hoagland’s solution, slide preparation by cell dissociation, and an air-drying technique. Using this method, well-resolved metaphasic chromosomes with different compaction levels were obtained. A chromosome number of 2n = 22 was confirmed. On the basis of metaphasic chromosomes with limited condensation, E. citriodora showed six metacentric and four submetacentric chromosomes, and one submetacentric chromosome with a nucleolus organizer region (NOR). Thus, the informative chromosomes obtained in this study has enabled the most precise karyotype description of a Eucalyptus species, to date.


2015 ◽  
Vol 145 (3-4) ◽  
pp. 218-229 ◽  
Author(s):  
Yoshinobu Uno ◽  
Chizuko Nishida ◽  
Chiyo Takagi ◽  
Takeshi Igawa ◽  
Naoto Ueno ◽  
...  

Sex determination in frogs (anurans) is genetic and includes both male and female heterogamety. However, the origins of the sex chromosomes and their differentiation processes are poorly known. To investigate diversity in the origins of anuran sex chromosomes, we compared the chromosomal locations of sex-linked genes in 4 species: the African clawed frog (Xenopus laevis), the Western clawed frog (Silurana/X. tropicalis), the Japanese bell-ring frog (Buergeria buergeri), and the Japanese wrinkled frog (Rana rugosa). Comparative mapping data revealed that the sex chromosomes of X. laevis, X. tropicalis and R. rugosa are different chromosome pairs; however, the sex chromosomes of X. tropicalis and B. buergeri are homologous, although this may represent distinct evolutionary origins. We also examined the status of sex chromosomal differentiation in B. buergeri, which possesses heteromorphic ZW sex chromosomes, using comparative genomic hybridization and chromosome painting with DNA probes from the microdissected W chromosome. At least 3 rearrangement events have occurred in the proto-W chromosome: deletion of the nucleolus organizer region and a paracentric inversion followed by amplification of non-W-specific repetitive sequences.


2018 ◽  
Vol 154 (3) ◽  
pp. 153-180
Author(s):  
Michael Schmid ◽  
Claus Steinlein

A detailed cytogenetic study on anurans belonging to the unranked taxon Terraranae revealed the existence of microscopically recognizable XY♂/XX♀ or ZZ♂/ZW♀ sex chromosomes in 11 species. Furthermore, in some species Y-autosome translocations were found, of which 5 could be confirmed. The male individuals carrying the Y-autosome translocations still coexist with the males showing the original karyotypes. The present report gives an overview on the mitotic and meiotic structure, staining and banding properties, functional importance, and similarities and differences of these Y-autosome translocations which are very rare in vertebrates. A mathematical model was constructed that calculates the various probabilities of further chromosome rearrangements in these karyotypes with Y-autosome translocations. The localization of the differential segment containing the hypothetical male sex-determining gene in the Y chromosome is discussed.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 156
Author(s):  
Lorenzo Clemente ◽  
Sofia Mazzoleni ◽  
Eleonora Pensabene ◽  
Tomáš Protiva ◽  
Philipp Wagner ◽  
...  

The Asian box turtle genus Cuora currently comprises 13 species with a wide distribution in Southeast Asia, including China and the islands of Indonesia and Philippines. The populations of these species are rapidly declining due to human pressure, including pollution, habitat loss, and harvesting for food consumption. Notably, the IUCN Red List identifies almost all species of the genus Cuora as Endangered (EN) or Critically Endangered (CR). In this study, we explore the karyotypes of 10 Cuora species with conventional (Giemsa staining, C-banding, karyogram reconstruction) and molecular cytogenetic methods (in situ hybridization with probes for rDNA loci and telomeric repeats). Our study reveals a diploid chromosome number of 2n = 52 chromosomes in all studied species, with karyotypes of similar chromosomal morphology. In all examined species, rDNA loci are detected at a single medium-sized chromosome pair and the telomeric repeats are restricted to the expected terminal position across all chromosomes. In contrast to a previous report, sex chromosomes are neither detected in Cuoragalbinifrons nor in any other species. Therefore, we assume that these turtles have either environmental sex determination or genotypic sex determination with poorly differentiated sex chromosomes. The conservation of genome organization could explain the numerous observed cases of interspecific hybridization both within the genus Cuora and across geoemydid turtles.


Author(s):  
Richard P Meisel

Abstract In species with polygenic sex determination, multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that polygenic sex determination is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider polygenic sex determination systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain polygenic sex determination under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain polygenic sex determination than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain polygenic sex determination tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain polygenic sex determination tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that polygenic sex determination will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.


1996 ◽  
Vol 250 (1) ◽  
pp. 123-128
Author(s):  
Georg Haberer ◽  
Thilo C. Fischer ◽  
Ramón A. Torres-Ruiz

Sign in / Sign up

Export Citation Format

Share Document