scholarly journals Resveratrol Pretreatment Ameliorates p53-Bax Axis and Augments the Survival Biomarker B-Cell Lymphoma 2 Modulated by Paracetamol Overdose in a Rat Model of Acute Liver Injury

Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 39-46 ◽  
Author(s):  
Suliman Al Humayed ◽  
Fahaid Al-Hashem ◽  
Mohamed A. Haidara ◽  
Abbas O. El Karib ◽  
Samaa S. Kamar ◽  
...  

Background: The potential protective effects of resveratrol (RES) on the modulation of hepatic biomarkers of apoptosis and survival, p53-Bax axis, and B-cell lymphoma 2 (Bcl-2) in an animal model of paracetamol-induced acute liver injury have not been investigated before. Methods: The model group of rats received a single dose of paracetamol (2 g/kg, orally), whereas the protective group of rats were pretreated for 7 days with RES (30 mg/kg, i.p.) before they were given a single dose of paracetamol. All rats were then sacrificed 24-h post paracetamol ingestion. Results: Histology images showed that paracetamol overdose induced acute liver injury, which was substantially protected by RES. Paracetamol significantly (p < 0.05) modulated p53, apoptosis regulator Bax, Bcl-2, tumor necrosis factor-alpha, interleukin-6, inducible nitric oxide synthase, malondialdehyde, superoxide dismutase, glutathione peroxidase, alanine aminotransferase, and aspartate aminotransferase, which were significantly protected by RES. We further demonstrated a significant (p< 0.01) correlation between either p53 or Bcl-2 scoring and the levels of inflammatory, nitrosative stress, and liver injury biomarkers. Conclusion: We demonstrate a substantial protection by RES pretreatment against paracetamol-induced modulation of p53-Bax axis, Bcl-2, and other acute liver injury biomarkers in rats.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 606-606
Author(s):  
Michael Milhollen ◽  
Usha Narayanan ◽  
Allison J Berger ◽  
Michael Thomas ◽  
Tary Traore ◽  
...  

Abstract MLN4924 is a first-in-class, small molecule inhibitor of the Nedd8 Activating Enzyme (NAE) in Phase I clinical trials in hematological malignancies. Inhibition of NAE by MLN4924 leads to decreased neddylation and inhibition of cullin-dependent ubiquitin ligase (CDL) activity. CDLs are enzyme complexes which control the ubiquitination and degradation of proteins with important roles in cell cycle progression and cell survival. CDL-mediated degradation of pIkBa regulates NF-kB signaling by freeing cytoplasmic NF-kB transcription factors to translocate to the nucleus promoting cell proliferation and survival. In tumors dependent on the NF-kB pathway for growth and survival, we hypothesized that MLN4924 inhibition of CDL activity would prevent pIkBa degradation and inhibit NF-kB signaling. We utilized models of ABC-like Diffuse Large B-cell Lymphoma (ABC-like DLBCL, OCI-Ly10 and OCI-Ly3 cells) dependent on NF-kB signaling for survival and Germinal Center B-cell like DLBCL (GCB-like DLBCL, OCI-Ly19 and OCI-Ly7 cells) that are not dependent on NF-kB signaling for survival. In vitro, we show that NAE inhibition by MLN4924 in ABC-like DLBCL produces marked stabilization of pIkBa, inhibits p65 nuclear translocation and NF-KB gene transcription demonstrating an inhibition of NF-kB signaling. The inhibition of NF-KB signaling in Ly10 cells results in a G1 phenotype and an acute induction of apoptosis. In contrast, in GCB-like DLBCL we observed an elevation of multiple substrates of the CDLs, an accumulation of cells with increased DNA content (&gt;4N) followed by a DNA damage response and induction of cell death. This mechanism of action in GCB-like DLBCL cells is observed in other tumor cell lines that are not dependent on NF-kB signaling for survival. In vivo administration of MLN4924 to mice bearing xenograft tumors of OCI-Ly10 and OCI-Ly19 resulted in a pharmacodynamic response of NAE pathway inhibition. In both models, a single dose of MLN4924 resulted in time and dose-dependent inhibition of total neddylated cullin levels and stabilization of CDL substrates including the CDL3Keap1 substrate, Nrf-2. Notably, in the OCI-Ly10 model, a single dose of MLN4924 resulted in a marked elevation of pIkBa levels, indicative of NF-kB pathway inhibition, and induction of apoptosis. In both OCI-Ly10 and OCI-Ly19 xenograft models, inhibition of the NAE pathway following repeated daily and intermittent dosing of MLN4924 translated into significant tumor growth inhibition. In the OCI-Ly10 model tumor regressions were observed showing this model to be particularly sensitive to MLN4924 treatment, reflecting the addiction of these tumors to NF-kB signaling. Additionally we demonstrate an inhibition of the NAE pathway and NF-KB signaling in a primary human tumor DLBCL xenograft model (PHTX-22L) resulting in tumor regressions following MLN4924 treatment. In summary, in tumors dependent on NF-kB signaling for growth and survival, MLN4924 inhibition of CDL activity provides a novel mechanism for targeted NF-kB pathway modulation and therapeutic intervention. In addition, these data demonstrate that MLN4924 is a novel agent that has broad activity in pre-clinical models of lymphoma.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2457-2466 ◽  
Author(s):  
DG Maloney ◽  
TM Liles ◽  
DK Czerwinski ◽  
C Waldichuk ◽  
J Rosenberg ◽  
...  

The B-cell antigen CD20 is expressed on normal B cells and by nearly all B-cell lymphomas. This nonmodulating antigen provides an excellent target for antibody-directed therapies. A chimeric anti-CD20 antibody (IDEC-C2B8), consisting of human IgG1-kappa constant regions and variable regions from the murine monoclonal anti-CD20 antibody IDEC- 2B8, has been produced for clinical trials. It lyses CD20+ cells in vitro via complement and antibody-dependent cell-mediated lysis. Preclinical studies have shown that the chimeric antibody selectively depletes B cells in blood and lymph nodes in macaque monkeys. In this phase I clinical trial, 15 patients (3 per dose level) with relapsed low-grade B-cell lymphoma were treated with a single dose (10, 50, 100, 250, or 500 mg/m2) of antibody administered intravenously. Treatment- related symptoms correlated with the number of circulating CD20 cells and grade II events consisted of fever (5 patients); nausea (2), rigor (2), orthostatic hypotension (2), bronchospasm (1), and thrombocytopenia (1). No significant toxicities were observed during the 3 months of follow-up. Serum C3, IgG, and IgM levels, neutrophils, and T cells were largely unchanged. At the three higher dose levels, pharmacokinetics of the free antibody showed a serum half-life of 4.4 days (range, 1.6 to 10.5). Levels greater than 10 micrograms/mL persisted in 6 of 9 patients for more than 14 days. No quantifiable immune responses to the infused antibody have been detected. CD20+ B cells were rapidly and specifically depleted in the peripheral blood at 24 to 72 hours and remained depleted for at least 2 to 3 months in most patients. Two-week postinfusion tumor biopsies showed the chimeric antibody bound to tumor cells and a decrease in the percentage of B cells. Tumor regressions occurred in 6 of 15 patients (2 partial and 4 minor responses). The results of this single-dose trial have been used to design a multiple-dose phase I/II study.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2457-2466 ◽  
Author(s):  
DG Maloney ◽  
TM Liles ◽  
DK Czerwinski ◽  
C Waldichuk ◽  
J Rosenberg ◽  
...  

Abstract The B-cell antigen CD20 is expressed on normal B cells and by nearly all B-cell lymphomas. This nonmodulating antigen provides an excellent target for antibody-directed therapies. A chimeric anti-CD20 antibody (IDEC-C2B8), consisting of human IgG1-kappa constant regions and variable regions from the murine monoclonal anti-CD20 antibody IDEC- 2B8, has been produced for clinical trials. It lyses CD20+ cells in vitro via complement and antibody-dependent cell-mediated lysis. Preclinical studies have shown that the chimeric antibody selectively depletes B cells in blood and lymph nodes in macaque monkeys. In this phase I clinical trial, 15 patients (3 per dose level) with relapsed low-grade B-cell lymphoma were treated with a single dose (10, 50, 100, 250, or 500 mg/m2) of antibody administered intravenously. Treatment- related symptoms correlated with the number of circulating CD20 cells and grade II events consisted of fever (5 patients); nausea (2), rigor (2), orthostatic hypotension (2), bronchospasm (1), and thrombocytopenia (1). No significant toxicities were observed during the 3 months of follow-up. Serum C3, IgG, and IgM levels, neutrophils, and T cells were largely unchanged. At the three higher dose levels, pharmacokinetics of the free antibody showed a serum half-life of 4.4 days (range, 1.6 to 10.5). Levels greater than 10 micrograms/mL persisted in 6 of 9 patients for more than 14 days. No quantifiable immune responses to the infused antibody have been detected. CD20+ B cells were rapidly and specifically depleted in the peripheral blood at 24 to 72 hours and remained depleted for at least 2 to 3 months in most patients. Two-week postinfusion tumor biopsies showed the chimeric antibody bound to tumor cells and a decrease in the percentage of B cells. Tumor regressions occurred in 6 of 15 patients (2 partial and 4 minor responses). The results of this single-dose trial have been used to design a multiple-dose phase I/II study.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 712 ◽  
Author(s):  
Ying-Jung Hsu ◽  
Chao-Wen Lin ◽  
Sheng-Li Cho ◽  
Wei-Shiung Yang ◽  
Chung-May Yang ◽  
...  

Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 446 ◽  
Author(s):  
Islam ◽  
Yu ◽  
Miao ◽  
Liu ◽  
He ◽  
...  

The root bark of Illicium henryi has been used in traditional Chinese medicine to treat lumbar muscle strain and rheumatic pain. Its ethanol extract (EEIH) has been previously reported to attenuate lipopolysaccharide (LPS)-induced acute kidney injury in mice. The present study aimed to evaluate the in vitro antioxidant activities and in vivo protective effects of EEIH against LPS-induced acute liver injury (ALI) in mice as well as explore its molecular mechanisms. The mice were injected intraperitoneally (i.p.) with EEIH at the doses of 1.25, 2.5, and 5.0 mg/kg every day for 5 days. One hour after the last administration, the mice were administered i.p. with LPS (8 mg/kg). After fasting for 12 h, blood and liver tissues were collected to histopathological observation, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH possessed 2,2-diphenyl-1-picrylhydrazil (DPPH) and 2,2′-azino-bis-(3-ethylbenzothiozoline-6-sulfonic acid) disodium salt (ABTS) radical scavenging activities and ferric-reducing antioxidant capacity in vitro. The histopathological examination, serum biochemical analysis, and liver myeloperoxidase (MPO) activity showed that EEIH pretreatment alleviated LPS-induced liver injury in mice. EEIH significantly dose-dependently decreased the mRNA and protein expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and COX-2 in liver tissue of LPS-induced ALI mice via downregulating the mRNA and protein expressions of toll-like receptor 4 (TLR4) and inhibiting the phosphorylation of nuclear factor-κB (NF-κB) p65. Furthermore, EEIH markedly ameliorated liver oxidative and nitrosative stress burden in LPS-treated mice through reducing the content of thiobarbituric acid reactive substances (TBARS), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) levels, restoring the decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and up-regulating nuclear factor erythroid 2 related factor 2 (Nrf2). These results demonstrate that EEIH has protective effects against ALI in mice via alleviating inflammatory response, oxidative and nitrosative stress burden through activating the Nrf2 and suppressing the TLR4/NF-κB signaling pathways. The hepatoprotective activity of EEIH might be attributed to the flavonoid compounds such as catechin (1), 3′,4′,7-trihydroxyflavone (2), and taxifolin (7) that most possibly act synergistically.


2015 ◽  
Vol 21 ◽  
pp. 153-154
Author(s):  
Abhijana Karunakaran ◽  
Kadapalakere Reddy ◽  
Anshu Alok ◽  
Manav Batra ◽  
Ajay Chaudhuri ◽  
...  
Keyword(s):  
B Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document