scholarly journals The Role of CXCL12 in Kidney Diseases: A Friend or Foe?

2021 ◽  
pp. 167-176
Author(s):  
Anni Song ◽  
Anni Jiang ◽  
Wei Xiong ◽  
Chun Zhang

<b><i>Background:</i></b> Chemokines are a family of proteins mainly mediating the homing and migration of various cells. The CXC chemokine CXCL12 is a member of low-weight-molecular chemokines. In the kidney, CXCL12 is pivotal for renal development and exerts a modulatory effect in kidney diseases under different etiologic settings by binding with CXC chemokine receptor 4 (CXCR4) or CXC chemokine receptor 7 (CXCR7). Besides, CXCL12 also exerts homeostasis influence in diverse physical conditions and various pathological situations. Thus, we conclude the complicated relationship between CXCL12 and kidney diseases in this review. <b><i>Summary:</i></b> In renal development, CXCL12 contributes a lot to nephrogenesis and the formation of renal vasculature via correlating with CXCR4. CXCL12 also plays an essential role in renal recovery from acute kidney injury. However, the CXCL12/CXCR4 axis plays a dual regulatory role in the initiation and development of diabetic kidney disease as well as chronic allogeneic nephropathy after kidney transplantation through dialectical consideration. Additionally, the CXCL12/CXCR4 link is considered as a new risk factor for lupus nephritis and renal cell carcinoma. <b><i>Key Messages:</i></b> Plenty of studies have presented the influence of CXCL12 and the relation with corresponding receptors in diverse biological and pathological statuses. Simultaneously, some drugs and antagonists targeting CXCL12/CXCR4 axis effectively treat various kidney diseases. However, more researches are needed to explore thorough influence and mechanisms, providing more cues for clinical treatments.

2007 ◽  
Vol 18 (8) ◽  
pp. 2873-2882 ◽  
Author(s):  
James E. Ip ◽  
Yaojiong Wu ◽  
Jing Huang ◽  
Lunan Zhang ◽  
Richard E. Pratt ◽  
...  

Recent evidence has demonstrated the importance of bone marrow-derived mesenchymal stem cells (BM-MSCs) in the repair of damaged myocardium. The molecular mechanisms of engraftment and migration of BM-MSCs in the ischemic myocardium are unknown. In this study, we developed a functional genomics approach toward the identification of mediators of engraftment and migration of BM-MSCs within the ischemic myocardium. Our strategy involves microarray profiling (>22,000 probes) of ischemic hearts, complemented by reverse transcription-polymerase chain reaction and fluorescence-activated cell sorting of corresponding adhesion molecule and cytokine receptors in BM-MSCs to focus on the coexpressed pairs only. Our data revealed nine complementary adhesion molecules and cytokine receptors, including integrin β1, integrin α4, and CXC chemokine receptor 4 (CXCR4). To examine their functional contributions, we first blocked selectively these receptors by preincubation of BM-MSCs with specific neutralizing antibodies, and then we administered these cells intramyocardially. A significant reduction in the total number of BM-MSC in the infarcted myocardium was observed after integrin β1 blockade but not integrin α4 or CXCR4 blockade. The latter observation is distinctively different from that reported for hematopoietic stem cells (HSCs). Thus, our data show that BM-MSCs use a different pathway from HSCs for intramyocardial trafficking and engraftment.


2007 ◽  
Vol 56 (10) ◽  
pp. 1589-1595 ◽  
Author(s):  
Stefania Scala ◽  
Caterina Ieranò ◽  
Alessandro Ottaiano ◽  
Renato Franco ◽  
Anna La Mura ◽  
...  

2017 ◽  
Vol 25 (2) ◽  
pp. 646-657 ◽  
Author(s):  
Markus Baumann ◽  
Mohammad Musarraf Hussain ◽  
Nina Henne ◽  
Daniel Moya Garrote ◽  
Stefanie Karlshøj ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Shanta Bhattarai ◽  
Yuri Mackeyev ◽  
Bhanu Venkatesulu ◽  
Sunil Krishnan ◽  
Pankaj Kumar Singh

CXC chemokine receptor 4 (CXCR4) is overexpressed on most breast cancer cell surfaces including triple negative breast cancer (TNBC) which lacks traditional receptor overexpression. We targeted gold nanoparticles (GNPs) to...


Planta Medica ◽  
2020 ◽  
Vol 86 (05) ◽  
pp. 331-337
Author(s):  
Buyun Kim ◽  
Yu-Hong Min ◽  
Byoungduck Park

AbstractMetastasis, which is closely linked to cancer-related deaths, is a highly complex process. It is an organ-specific process and involves interactions between the host and cancer cells. CXC chemokine receptor 4 is known to be expressed in various tumors and the binding with CXC ligand 12 induces signaling in cancer cell survival, migration, and proliferation. Particularly, the CXC chemokine receptor 4/CXC ligand 12 axis is known to promote the metastasis of breast cancer. Thus, agents that can downregulate CXC chemokine receptor 4 expression have potential against cancer metastasis. Minecoside is an active compound extracted from Veronica peregrina L. It is widely distributed in Korea and has been used as a traditional drug for the treatment of various chronic diseases. However, the anticancer and anti-inflammatory effects of minecoside have yet to be clarified. In this study, we found that minecoside downregulates constitutive CXC chemokine receptor 4 expression in MDA-MB-231 breast cancer cells. This downregulation also occurred at the transcriptional level. Minecoside-mediated suppression of CXC chemokine receptor 4 expression inhibited CXC ligand 12-induced invasion of breast and colorectal cancer cells. Overall, our results suggest that minecoside can be a novel anticancer agent that can inhibit cancer metastasis through inhibition of CXC chemokine receptor 4 expression.


Medicine ◽  
2019 ◽  
Vol 98 (23) ◽  
pp. e15948 ◽  
Author(s):  
Tingyong Cao ◽  
Yuanxin Ye ◽  
Hongyan Liao ◽  
Xiao Shuai ◽  
Yongmei Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document