Digital Biomarkers of Cognitive Frailty: The Value of Detailed Gait Assessment Beyond Gait Speed

Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.

2014 ◽  
Vol 22 (3) ◽  
pp. 324-333 ◽  
Author(s):  
Lars Donath ◽  
Oliver Faude ◽  
Stephanie A. Bridenbaugh ◽  
Ralf Roth ◽  
Martin Soltermann ◽  
...  

This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale—International [FES–I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65–85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES–I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES–I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.


2019 ◽  
Vol 34 (6) ◽  
pp. 885-885
Author(s):  
L Wadia ◽  
C Higginson ◽  
M Bifano ◽  
K Seymour ◽  
R Orr ◽  
...  

Abstract Objective Research suggests a link between gait and cognition. Executive functions have been related to gait speed, however the relation between design fluency and visuoperception and other spatiotemporal gait characteristics that are related to falling is unclear. The objective of the study was to determine whether performance on design fluency and visuoperception tasks is related to spatiotemporal gait parameters during single and dual task treadmill walking in a sample of healthy adults. Method Nineteen healthy adults averaging 40 years of age completed cognitive measures of design fluency, visual attention, and visuoperception. They underwent gait analysis while walking on an instrumented treadmill in single task and dual task conditions. Results Performance on Spatial Span significantly correlated with single task stride length, r = 0.47, p = 0.043. Performance on Block Design significantly correlated with dual task stride length, r = 0.46, p = 0.049. Performance on Design Fluency significantly correlated with single task stride length variability, r = -0.50, p = 0.030, dual task stride length variability, r = -0.62, p = 0.005, and dual task step width variability, r = -0.56, p = 0.012. Performance on Picture Completion also correlated with dual task step width variability, r = -0.54, p = 0.017. Conclusions Design fluency and visuoperception appear related to spatiotemporal gait parameters in healthy adults. Worse cognitive performance was related to greater variability in dual task stride length and step width, gait characteristics associated with falling in aging and neurological populations.


2010 ◽  
Vol 90 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Rachel Kizony ◽  
Mindy F. Levin ◽  
Lucinda Hughey ◽  
Claire Perez ◽  
Joyce Fung

Background Gait and cognitive functions can deteriorate during dual tasking, especially in people with neurological deficits. Most studies examining the simultaneous effects of dual tasking on motor and cognitive aspects were not performed in ecological environments. Using virtual reality technology, functional environments can be simulated to study dual tasking. Objectives The aims of this study were to test the feasibility of using a virtual functional environment for the examination of dual tasking and to determine the effects of dual tasking on gait parameters in people with stroke and age-matched controls who were healthy. Design This was a cross-sectional observational study. Methods Twelve community-dwelling older adults with stroke and 10 age-matched older adults who were healthy participated in the study. Participants walked on a self-paced treadmill while viewing a virtual grocery aisle projected onto a screen placed in front of them. They were asked to walk through the aisle (single task) or to walk and select (“shop for”) items according to instructions delivered before or during walking (dual tasking). Results Overall, the stroke group walked slower than the control group in both conditions, whereas both groups walked faster overground than on the treadmill. The stroke group also showed larger variability in gait speed and shorter stride length than the control group. There was a general tendency to increase gait speed and stride length during dual-task conditions; however, a significant effect of dual tasking was found only in one dual-task condition for gait speed and stride duration variability. All participants were able to complete the task with minimal mistakes. Limitations The small size and heterogeneity of the sample were limitations of the study. Conclusions It is feasible to use a functional virtual environment for investigation of dual tasking. Different gait strategies, including an increase or decrease in gait speed, can be used to cope with the increase in cognitive demands required for dual tasking.


Author(s):  
He Zhou ◽  
Fadwa Al-Ali ◽  
Hadi Rahemi ◽  
Nishat Kulkarni ◽  
Abdullah Hamad ◽  
...  

Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. To examine whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48-64 years) and older adults (65+ years). One hundred and ninety-six subjects (age=66.2&plusmn;9.1 years, body-mass-index=30.1&plusmn;6.4 kg/m2, female=56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n=38) and without HD (Mid-age HD-, n=40); older adults with diabetes undergoing HD (Older HD+, n=36) and without HD (Older HD-, n=37); and non-diabetic older adults (Older DM-, n=45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p&lt;0.050). Among people with diabetes, the HD+ had significantly worsened gait and balance when comparing to the HD- (Cohen&rsquo;s effect size d=0.63-2.32, p&lt;0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d=2.32, p&lt;0.001). Results suggested that deterioration in gait speed among the HD+ was correlated with age (r=-0.440, p&lt;0.001), while this correlation was diminished among the HD-. Interestingly, results also suggested that poor gait in the Older HD- related to poor balance, while no correlation was observed between poor balance and poor gait among the Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among non-HD people with diabetes, poor static balance described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visits. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3577 ◽  
Author(s):  
Massimiliano Pau ◽  
Ilaria Mulas ◽  
Valeria Putzu ◽  
Gesuina Asoni ◽  
Daniela Viale ◽  
...  

The main purpose of the present study was to compare the smoothness of gait in older adults with and without cognitive impairments, using the harmonic ratio (HR), a metric derived from trunk accelerations. Ninety older adults aged over 65 (age: 78.9 ± 4.8 years; 62% female) underwent instrumental gait analysis, performed using a wearable inertial sensor and cognitive assessment with the Mini Mental State Examination (MMSE) and Addenbrooke’s Cognitive Examination Revised (ACE-R). They were stratified into three groups based on their MMSE performance: healthy controls (HC), early and advanced cognitive decline (ECD, ACD). The spatio-temporal and smoothness of gait parameters, the latter expressed through HR in anteroposterior (AP), vertical (V) and mediolateral (ML) directions, were derived from trunk acceleration data. The existence of a relationship between gait parameters and degree of cognitive impairment was also explored. The results show that individuals with ECD and ACD exhibited significantly slower speed and shorter stride length, as well as reduced values of HR in the AP and V directions compared to HC, while no significant differences were found between ECD and ACD in any of the investigated parameters. Gait speed, stride length and HR in all directions were found to be moderately correlated with both MMSE and ACE-R scores. Such findings suggest that, in addition to the known changes in gait speed and stride length, important reductions in smoothness of gait are likely to occur in older adults, owing to early/prodromal stages of cognitive impairment. Given the peculiar nature of these metrics, which refers to overall body stability during gait, the calculation of HR may result in being useful in improving the characterization of gait patterns in older adults with cognitive impairments.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3939 ◽  
Author(s):  
He Zhou ◽  
Fadwa Al-Ali ◽  
Hadi Rahemi ◽  
Nishat Kulkarni ◽  
Abdullah Hamad ◽  
...  

Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. This study examined whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48–64 years) and older adults (65+ years). One hundred and ninety-six subjects (age = 66.2 ± 9.1 years, body-mass-index = 30.1 ± 6.4 kg/m2, female = 56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n = 38) and without HD (Mid-age HD−, n = 40); older adults with diabetes undergoing HD (Older HD+, n = 36) and without HD (Older HD−, n = 37); and non-diabetic older adults (Older DM−, n = 45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p < 0.050). Among people with diabetes, HD+ had significantly worsened gait and balance when comparing to HD− (Cohen’s effect size d = 0.63–2.32, p < 0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d = 2.32, p < 0.001). Results suggested that deterioration in normalized gait speed among HD+ was negatively correlated with age (r = −0.404, p < 0.001), while this correlation was diminished among HD−. Interestingly, results also suggested that poor gait among Older HD− is related to poor ankle stability, while no correlation was observed between poor ankle stability and poor gait among Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among HD− people with diabetes, poor ankle stability described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visit. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.


2019 ◽  
Vol 14 (7) ◽  
pp. 983-993 ◽  
Author(s):  
Jeannie Tran ◽  
Emmeline Ayers ◽  
Joe Verghese ◽  
Matthew K. Abramowitz

Background and objectivesOlder adults with CKD are at high risk of falls and disability. It is not known whether gait abnormalities contribute to this risk.Design, setting, participants, & measurementsQuantitative and clinical gait assessments were performed in 330 nondisabled community-dwelling adults aged ≥65 years. CKD was defined as an eGFR <60 ml/min per 1.73 m2. Cox proportional hazards models were created to examine fall risk.ResultsA total of 41% (n=134) of participants had CKD. In addition to slower gait speed, participants with CKD had gait cycle abnormalities including shorter stride length and greater time in the stance and double-support phases. Among people with CKD, lower eGFR was independently associated with the severity of gait cycle abnormalities (per 10 ml/min per 1.73 m2 lower eGFR: 3.6 cm [95% confidence interval (95% CI), 1.4 to 5.8] shorter stride length; 0.7% [95% CI, 0.3 to 1.0] less time in swing phase; 1.1% [95% CI, 0.5 to 1.7] greater time in double-support phase); these abnormalities mediated the association of lower eGFR with slower gait speed. On clinical gait exam, consistent with the quantitative abnormalities, short steps and marked swaying or loss of balance were more common among participants with CKD, yet most had no identifiable gait phenotype. A gait phenotype defined by any of these abnormal signs was associated with higher risk of falls among participants with CKD: compared with people without CKD and without the gait phenotype, the adjusted hazard ratio was 1.72 (95% CI, 1.06 to 2.81) for those with CKD and the phenotype; in comparison, the adjusted hazard ratio was 0.71 (95% CI, 0.40 to 1.25) for people with CKD but without the phenotype (P value for interaction of CKD status and gait phenotype =0.01).ConclusionsCKD in older adults is associated with quantitative gait abnormalities, which clinically manifest in a gait phenotype that is associated with fall risk.


Gerontology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Changhong Wang ◽  
Michelle Patriquin ◽  
Ashkan Vaziri ◽  
Bijan Najafi

<b><i>Introduction:</i></b> Concern about falling is a prevalent worry among community-dwelling older adults and may contribute to a decline in physical and mental health. This study aimed to examine the association between mobility performance and concern about falling. <b><i>Methods:</i></b> Older adults aged 65 years and older, with Mini-Mental State Examination score ≥24, and ambulatory (with or without the assistive device) were included. Concern about falling was evaluated with Falls Efficacy Scale-International (FES-I) scores. Participants with high concern about falling were identified using the cutoff of FES-I ≥23. Participants’ motor capacity was assessed in standardized walking tests under single- and dual-task conditions. Participants’ mobility performance was measured based on a 48-h trunk accelerometry signal from a wearable pendant sensor. <b><i>Results:</i></b> No significant differences were observed at participant characteristics across groups with different levels of concern about falling (low: <i>N</i> = 64, age = 76.3 ± 7.2 years, female = 46%; high: <i>N</i> = 59, age = 79.3 ± 9.1 years, female = 47%), after propensity matching with BMI, age, depression, and cognition. With adjustment of motor capacity (stride velocity and stride length under single- and dual-task walking conditions), participants with high concern about falling had significantly poorer mobility performance than those with low concern about falling, including lower walking quantity (walking bouts, steps and time per day, and walking bout average, walking bout variability, and longest walking bout, <i>p</i> ≤ 0.013), and poorer daily-life gait (stride velocity and gait variability, <i>p</i> ≤ 0.023), and poorer walking quality (frontal gait symmetry, and trunk acceleration and velocity intensity, <i>p</i> ≤ 0.041). The selected mobility performance metrics (daily steps and frontal gait symmetry) could significantly contribute to identifying older adults with high concern about falling (<i>p</i> ≤ 0.042), having better model performance (<i>p</i> = 0.036) than only walking quantity (daily steps) with adjustment of confounding effects from the motor capacity (stride length under dual-task walking condition). <b><i>Conclusion:</i></b> There is an association between mobility performance and concern about falling in older adults. Mobility performance metrics can serve as predictors to identify older adults with high concern about falling, potentially providing digital biomarkers for clinicians to remotely track older adults’ change of concern about falling via applications of remote patient monitoring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julie Soulard ◽  
Jacques Vaillant ◽  
Athan Baillet ◽  
Philippe Gaudin ◽  
Nicolas Vuillerme

AbstractStudies on the effects of dual tasking in patients with chronic inflammatory rheumatic diseases are limited. The aim of this study was to assess dual tasking while walking in patients with axial spondyloarthritis (axSpA) in comparison to healthy controls. Thirty patients with axSpA and thirty healthy controls underwent a 10-m walk test at a self-selected comfortable walking speed in single- and dual-task conditions. Foot-worn inertial sensors were used to compute spatiotemporal gait parameters. Analysis of spatiotemporal gait parameters showed that the secondary manual task negatively affected walking performance in terms of significantly decreased mean speed (p < 0.001), stride length (p < 0.001) and swing time (p = 0.008) and increased double support (p = 0.002) and stance time (p = 0.008). No significant interaction of group and condition was observed. Both groups showed lower gait performance in dual task condition by reducing speed, swing time and stride length, and increasing double support and stance time. Patients with axSpA were not more affected by the dual task than matched healthy controls, suggesting that the secondary manual task did not require greater attention in patients with axSpA. Increasing the complexity of the walking and/or secondary task may increase the sensitivity of the dual-task design to axial spondyloarthritis.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1328 ◽  
Author(s):  
Gu Eon Kang ◽  
Jacqueline Yang ◽  
Bijan Najafi

People with peripheral neuropathy (PN) are at risk of falling. Many people with PN have comorbid cognitive impairment, an independent risk factor of falls, which may further increase the risk of falling in people with PN. However, the negative synergic effect of those factors is yet to be reported. We investigated whether the presence of cognitive impairment exacerbates the risk of falls in people with PN by measuring gait variability during single-task walking and dual-task walking. Forty-four adults with PN were recruited. Based on the Montreal Cognitive Assessment (MoCA) scores, 19 and 25 subjects were cognitively impaired and intact, respectively. We measured coefficients of variation of gait speed, stride length, and stride time using validated body-worn sensors. During single-task walking, no between-group differences were observed (all p > 0.05). During dual-task walking, between-group differences were significant for gait variability for gait speed and stride length (51.4% and 71.1%, respectively; p = 0.014 and 0.011, respectively). MoCA scores were significantly correlated with gait variability for gait speed (r = 0.319, p = 0.035) and stride length (r = 0.367, p = 0.014) during dual-task walking. Our findings suggest that the presence of cognitive impairment exacerbates the risk of falls in people with PN.


Sign in / Sign up

Export Citation Format

Share Document