scholarly journals Hemodialysis Impact on Motor Function Beyond Aging and Diabetes – Objectively Assessing Gait and Balance by Wearable Technology

Author(s):  
He Zhou ◽  
Fadwa Al-Ali ◽  
Hadi Rahemi ◽  
Nishat Kulkarni ◽  
Abdullah Hamad ◽  
...  

Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. To examine whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48-64 years) and older adults (65+ years). One hundred and ninety-six subjects (age=66.2±9.1 years, body-mass-index=30.1±6.4 kg/m2, female=56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n=38) and without HD (Mid-age HD-, n=40); older adults with diabetes undergoing HD (Older HD+, n=36) and without HD (Older HD-, n=37); and non-diabetic older adults (Older DM-, n=45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p<0.050). Among people with diabetes, the HD+ had significantly worsened gait and balance when comparing to the HD- (Cohen’s effect size d=0.63-2.32, p<0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d=2.32, p<0.001). Results suggested that deterioration in gait speed among the HD+ was correlated with age (r=-0.440, p<0.001), while this correlation was diminished among the HD-. Interestingly, results also suggested that poor gait in the Older HD- related to poor balance, while no correlation was observed between poor balance and poor gait among the Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among non-HD people with diabetes, poor static balance described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visits. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3939 ◽  
Author(s):  
He Zhou ◽  
Fadwa Al-Ali ◽  
Hadi Rahemi ◽  
Nishat Kulkarni ◽  
Abdullah Hamad ◽  
...  

Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. This study examined whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48–64 years) and older adults (65+ years). One hundred and ninety-six subjects (age = 66.2 ± 9.1 years, body-mass-index = 30.1 ± 6.4 kg/m2, female = 56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n = 38) and without HD (Mid-age HD−, n = 40); older adults with diabetes undergoing HD (Older HD+, n = 36) and without HD (Older HD−, n = 37); and non-diabetic older adults (Older DM−, n = 45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p < 0.050). Among people with diabetes, HD+ had significantly worsened gait and balance when comparing to HD− (Cohen’s effect size d = 0.63–2.32, p < 0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d = 2.32, p < 0.001). Results suggested that deterioration in normalized gait speed among HD+ was negatively correlated with age (r = −0.404, p < 0.001), while this correlation was diminished among HD−. Interestingly, results also suggested that poor gait among Older HD− is related to poor ankle stability, while no correlation was observed between poor ankle stability and poor gait among Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among HD− people with diabetes, poor ankle stability described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visit. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


2019 ◽  
Vol 14 (7) ◽  
pp. 983-993 ◽  
Author(s):  
Jeannie Tran ◽  
Emmeline Ayers ◽  
Joe Verghese ◽  
Matthew K. Abramowitz

Background and objectivesOlder adults with CKD are at high risk of falls and disability. It is not known whether gait abnormalities contribute to this risk.Design, setting, participants, & measurementsQuantitative and clinical gait assessments were performed in 330 nondisabled community-dwelling adults aged ≥65 years. CKD was defined as an eGFR <60 ml/min per 1.73 m2. Cox proportional hazards models were created to examine fall risk.ResultsA total of 41% (n=134) of participants had CKD. In addition to slower gait speed, participants with CKD had gait cycle abnormalities including shorter stride length and greater time in the stance and double-support phases. Among people with CKD, lower eGFR was independently associated with the severity of gait cycle abnormalities (per 10 ml/min per 1.73 m2 lower eGFR: 3.6 cm [95% confidence interval (95% CI), 1.4 to 5.8] shorter stride length; 0.7% [95% CI, 0.3 to 1.0] less time in swing phase; 1.1% [95% CI, 0.5 to 1.7] greater time in double-support phase); these abnormalities mediated the association of lower eGFR with slower gait speed. On clinical gait exam, consistent with the quantitative abnormalities, short steps and marked swaying or loss of balance were more common among participants with CKD, yet most had no identifiable gait phenotype. A gait phenotype defined by any of these abnormal signs was associated with higher risk of falls among participants with CKD: compared with people without CKD and without the gait phenotype, the adjusted hazard ratio was 1.72 (95% CI, 1.06 to 2.81) for those with CKD and the phenotype; in comparison, the adjusted hazard ratio was 0.71 (95% CI, 0.40 to 1.25) for people with CKD but without the phenotype (P value for interaction of CKD status and gait phenotype =0.01).ConclusionsCKD in older adults is associated with quantitative gait abnormalities, which clinically manifest in a gait phenotype that is associated with fall risk.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Chenzhen Du ◽  
Hongyan Wang ◽  
Heming Chen ◽  
Xiaoyun Fan ◽  
Dongliang Liu ◽  
...  

Aims: Using specials wearable sensors, we explored changes in gait and balance parameters, over time, in elderly patients at high risk of diabetic foot, wearing different types of footwear. This assessed the relationship between gait and balance changes in elderly diabetic patients and the development of foot ulcers, in a bid to uncover potential benefits of wearable devices in the prognosis and management of the aforementioned complication. Methods: A wearable sensor-based monitoring system was used in middle-elderly patients with diabetes who recently recovered from neuropathic plantar foot ulcers. A total of 6 patients (age range: 55–80 years) were divided into 2 groups: the therapeutic footwear group (n = 3) and the regular footwear (n = 3) group. All subjects were assessed for gait and balance throughout the study period. Walking ability and gait pattern were assessed by allowing participants to walk normally for 1 min at habitual speed. The balance assessment program incorporated the “feet together” standing test and the instrumented modified Clinical Test of Sensory Integration and Balance. Biomechanical information was monitored at least 3 times. Results: We found significant differences in stride length (p < 0.0001), stride velocity (p < 0.0001), and double support (p < 0.0001) between the offloading footwear group (OG) and the regular footwear group on a group × time interaction. The balance test embracing eyes-open condition revealed a significant difference in Hip Sway (p = 0.004), COM Range ML (p = 0.008), and COM Position (p = 0.004) between the 2 groups. Longitudinally, the offloading group exhibited slight improvement in the performance of gait parameters over time. The stride length (odds ratio 3.54, 95% CI 1.34–9.34, p = 0.018) and velocity (odds ratio 3.13, 95% CI 1.19–8.19, p = 0.033) of OG patients increased, converse to the double-support period (odds ratio 6.20, 95% CI 1.97–19.55, p = 0.002), which decreased. Conclusions: Special wearable devices can accurately monitor gait and balance parameters in patients in real time. The finding reveals the feasibility and effectiveness of advanced wearable sensors in the prevention and management of diabetic foot ulcer and provides a solid background for future research. In addition, the development of foot ulcers in elderly diabetic patients may be associated with changes in gait parameters and the nature of footwear. Even so, larger follow-up studies are needed to validate our findings.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Massimiliano Pau ◽  
Federica Corona ◽  
Roberta Pili ◽  
Carlo Casula ◽  
Marco Guicciardi ◽  
...  

This study aimed to investigate possible differences in spatio-temporal gait parameters of people with Parkinson’s Disease (pwPD) when they are tested either in laboratory using 3D Gait Analysis or in a clinical setting using wearable accelerometers. The main spatio-temporal gait parameters (speed, cadence, stride length, stance, swing and double support duration) of 31 pwPD were acquired: i) using a wearable accelerometer in a clinical setting while wearing shoes (ISS); ii) same as condition 1, but barefoot (ISB); iii) using an optoelectronic system (OES) undressed and barefoot. While no significant differences were found for cadence, stance, swing and double support duration, the experimental setting affected speed and stride length that decreased (by 17% and 12% respectively, P<0.005) when passing from the clinical (ISS) to the laboratory (OES) setting. These results suggest that gait assessment should be always performed in the same conditions to avoid errors, which may lead to inaccurate patient’s evaluations.


2018 ◽  
Vol 108 (2) ◽  
pp. 126-139 ◽  
Author(s):  
Amy Muchna ◽  
Bijan Najafi ◽  
Christopher S. Wendel ◽  
Michael Schwenk ◽  
David G. Armstrong ◽  
...  

Background:Research on foot problems and frailty is sparse and could advance using wearable sensor–based measures of gait, balance, and physical activity (PA). This study examined the effect of foot problems on the likelihood of falls, frailty syndrome, motor performance, and PA in community-dwelling older adults.Methods:Arizona Frailty Cohort Study participants (community-dwelling adults aged ≥65 years without baseline cognitive deficit, severe movement disorders, or recent stroke) underwent Fried frailty and foot assessment. Gait, balance (bipedal eyes open and eyes closed), and spontaneous PA over 48 hours were measured using validated wearable sensor technologies.Results:Of 117 participants, 41 (35%) were nonfrail, 56 (48%) prefrail, and 20 (17%) frail. Prevalence of foot problems (pain, peripheral neuropathy, or deformity) increased significantly as frailty category worsened (any problem: 63% in nonfrail, 80% in prefrail [odds ratio (OR) = 2.0], and 95% in frail [OR = 8.3]; P = .03 for trend) due to associations between foot problems and both weakness and exhaustion. Foot problems were associated with fear of falling but not with fall history or incident falls over 6 months. Foot pain and peripheral neuropathy were associated with lower gait speed and stride length; increased double support time; increased mediolateral sway of center of mass during walking, age adjusted; decreased eyes open sway of center of mass and ankle during quiet standing, age adjusted; and lower percentage walking, percentage standing, and total steps per day.Conclusions:Foot problems were associated with frailty level and decreased motor performance and PA. Wearable technology is a practical way to screen for deterioration in gait, balance, and PA that may be associated with foot problems. Routine assessment and management of foot problems could promote earlier intervention to retain motor performance and manage fear of falling in older adults, which may ultimately improve healthy aging and reduce risk of frailty.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 386
Author(s):  
Max Toepfer ◽  
Alejandra Padilla ◽  
Kevin Ponto ◽  
Andrea H Mason ◽  
Kristen A Pickett

Quantification of gait changes in response to altered environmental stimuli may allow for improved understanding of the mechanisms that influence gait changes and fall occurrence in older adults. This study explored how systematic manipulation of a single dimension of one’s environment affects spatiotemporal gait parameters. A total of 20 older adult participants walked at a self-selected pace in a constructed research hallway featuring a mobile wall, which allowed manipulation of the hallway width between three conditions: 1.14 m, 1.31 m, and 1.48 m. Spatiotemporal data from participants’ walks were captured using an instrumented GAITRite mat. A repeated measures ANOVA revealed older adults spent significantly more time in double support in the narrowest hallway width compared to the widest, but did not significantly alter other spatiotemporal measures. Small-scale manipulations of a single dimension of the environment led to subtle, yet in some cases significant changes in gait, suggesting that small or even imperceptible environmental changes may contribute to altered gait patterns for older adults.


2014 ◽  
Vol 22 (3) ◽  
pp. 324-333 ◽  
Author(s):  
Lars Donath ◽  
Oliver Faude ◽  
Stephanie A. Bridenbaugh ◽  
Ralf Roth ◽  
Martin Soltermann ◽  
...  

This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale—International [FES–I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65–85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES–I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES–I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gopal Nambi ◽  
Walid Kamal Abdelbasset ◽  
Anju Verma ◽  
Shereen H. Elsayed ◽  
Osama R. Aldhafian ◽  
...  

Background and Objective. To date, there were no clinically proven and evident ACLR rehabilitation protocols developed exclusively for football players, also no comparative studies were conducted on kinematic, kinetic, and EMG parameters on postoperative rehabilitation protocol in acute and chronic ACLR. The objective of this study was to find and compare the kinematic, kinetic, and EMG effects of postoperative rehabilitation after acute and chronic ACLR surgeries in football players. Design and Setting. Using the convenience sampling method, eligible subjects were divided into three groups. The test group consisted of acute (n = 15) and chronic (n = 15) ACL injured subjects who underwent ACLR surgery and 8 weeks postoperative rehabilitation. The control group consists of (n = 15) healthy subjects. Kinematic (cadence (steps/min), step length (cm), step width (cm), double support (% of the gait cycle), and swing phase (% of the gait cycle)), kinetic (F1, early stance phase; F2, middle stance phase; and F3, late stance phase forces), and EMG data of the (biceps femoris, adductor longus, vastus medialis, and vastus lateralis) muscles were recorded and analyzed at baseline, 8 weeks, 6 months, and 12 months follow-up. Results. The results of the a-ACLR, c-ACLR, and control groups were compared. At 8 weeks following postoperative rehabilitation, the a-ACLR group shows more significant changes than the c-ACLR group ( p < 0.001 ). At 6 and 12 months, there are normal values of kinematic and kinetic values in a-ACLR compared with the results of the control group ( p < 0.001 ). Conclusion. The study showed that postoperative rehabilitation provides significant effects in the kinematic, kinetic, and EMG gait parameters in acute ACLR than chronic ACLR subjects. Early surgical intervention and postrehabilitation are mandatory to get the significant effects in the clinical parameters in acute and chronic ACL injury.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jessica Oschwald ◽  
Susan Mérillat ◽  
Lutz Jäncke ◽  
Rachael D. Seidler

BackgroundWhile it is well-known that deficits in motor performance and brain structural connectivity occur in the course of healthy aging, it is still unclear if and how these changes are related to each other. While some cross-sectional studies suggest that white matter (WM) microstructure is positively associated with motor function in healthy older adults, more evidence is needed. Moreover, longitudinal data is required to estimate whether similar associations can be found between trajectories of change in WM microstructure and motor function. The current study addresses this gap by investigating age-associations and longitudinal changes in WM microstructure and motor function, and the cross-sectional (level-level) and longitudinal (level-change, change-change) association between these two domains.MethodWe used multiple-occasion data (covering 4 years) from a large sample (N = 231) of healthy older adults from the Longitudinal Healthy Aging Brain (LHAB) database. To measure WM microstructure, we used diffusion-weighted imaging data to compute mean FA in three selected WM tracts [forceps minor (FMIN); superior longitudinal fasciculus (SLF); corticospinal tract (CST)]. Motor function was measured via two motor speed tests (grooved pegboard, finger tapping) and one motor strength test (grip force test), separately for the left and the right hand. The statistical analysis was conducted with longitudinal growth curve models in the structural equation modeling framework.ResultsThe results revealed longitudinal decline and negative cross-sectional age-associations for mean WM FA in the FMIN and SLF, and for motor function in all tests, with a higher vulnerability for left than right hand motor performance. Regarding cross-domain associations, we found a significant positive level-level correlation among mean WM FA in the FMIN with motor speed. Mean FA in SLF and CST was not correlated with motor performance measures, and none of the level-change or change-change associations were significant. Overall, our results (a) provide important insights into aging-related changes of fine motor abilities and FA in selected white matter tracts associated with motor control, (b) support previous cross-sectional work showing that neural control of movement in older adults also involves brain structures outside the core motor system and (c) align with the idea that, in healthy aging, compensatory mechanisms may be in place and longer time delays may be needed to reveal level-change or change-change associations.


Sign in / Sign up

Export Citation Format

Share Document