scholarly journals Analysis of airborne dust effects on terrestrialmicrowave propagation in arid area

2019 ◽  
Vol 8 (3) ◽  
pp. 1014-1021
Author(s):  
Elfatih A. A. Elsheikh ◽  
Islam Md. Rafiqul ◽  
Mohamad Hadi Habaebi ◽  
Ahmad F. Ismail ◽  
Z. E. O. Elshaikh ◽  
...  

Sand and dust storms are environmental phenomena ,during these storms optical visibility might be decreased, consequently, atmospheric attenuation is clearly noticed.Micro-wave (MW) and Milimeter-wave (mm) propagation is severely affected by dust and sand storms in considerable areas around the world. Suspended dust particles may directly cause attenuation and cross polarization to the Electromagnetic waves propagating through the storm. In this paper, a thorough investigation of dust storm characteristics based onmeasured optical visibility and relative humidity is presented. In addition,the dust storms effects of on Micro-wave and Millimeter-wave propagation have been studied based on data measured Received Signal levels (RSL)and dust storm characteristics synchronously. Analyticaldustattenuationmodels predictions are matched to the measured attenuationdata at 14 GHz and 21 GHz. It has been found that the measured attenuation is approximately ten times higher than the predicted attenuation for both frequencies.

SAGE Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 215824402093107
Author(s):  
Natalia Soto-Coloballes

The present essay documents changes to both objects of inquiry and the meaning of the epistemological concept of air pollution and it explains the processes that produced them. Smog as a result of production processes and the use of the automobile was not a concern for researchers and government managers in Mexico City, who were used to the dust storms resulting from the desiccation of the great Texcoco Lake during much of the 20th century, until the most industrialized nations of the West and the World Health Organization (WHO), alongside other international bodies such as the Organization for European Economic Cooperation (OEEC), reframed what was understood as air pollution, between the end of the 1960s and the beginning of the 1970s. Concerns about dust storms were displaced by concerns about factory and automotive emissions that contained new dangers—invisible hazards, just then being estimated, which altered what was understood or considered air pollution and gave rise to the quantification of particulate matter (which was then known as suspended dust particles) and new practices such as atmospheric monitoring. This essay concludes that what is understood as air pollution is situated; its meaning is not finite but simply evolves with time and with the rise of new global risks and concerns.


Author(s):  
Parya Broomandi ◽  
Bahram Dabir ◽  
Babak Bonakdarpour ◽  
Yousef Rashidi

Background: Long-range transport of dust aerosol has intense impacts on theatmospheric environment over wide areas. Methods: The annual and seasonal changes inmeteorological parameters associated with the occurrence of dust storms were studied. Thefeatures of an intense dust storm and its transport characteristics were studied during June 7thto June 9th 2010 in Ahvaz city. Temporal and spatial distribution of Middle Eastern dust stormevent was analyzed by models of HYSPLIT and WRF/Chem, and in- situ observations. Results:A disagreement between the occurrences of dust storms, temperature, relative humidity andrainfall, show the major source of dust storms over Ahvaz city are neighboring countries. UsingHYSPLIT results, the dust particles are mainly transported from north western region of Iraqand eastern Syria to downward areas including Ahvaz city. The arrived Dust aerosols mixedwith local anthropogenic emissions, led to the highest PM10 concentration of 4200 ppm. Themodel results were found to well reproduce temporal and spatial distribution of mineral dustconcentrations according to in-situ measurements. Conclusion: The performance of WRF/Chemwas acceptable for simulation of temporal and spatial distributions of dust storm events.Therefore, it can be taken as a reference in daily air quality forecasting.


2011 ◽  
Vol 11 (9) ◽  
pp. 26009-26034 ◽  
Author(s):  
S. Nickovic ◽  
A. Vukovic ◽  
M. Vujadinovic ◽  
V. Djurdjevic ◽  
G. Pejanovic

Abstract. Dust storms and associated mineral aerosol transport are mainly driven by meso and synoptic scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive the dust emission and atmospheric transport be represented with sufficiently well resolved spatial and temporal features. Effects of airborne dust interactions with the environment are determent by the mineral composition of dust particles. Fractions of various minerals in the aerosol are determined by the mineral composition of arid soils, therefore high-resolution specification of mineral and physical properties of dust sources is needed as well. Most current dust atmospheric models simulate/predict the evolution of dust concentration but in most cases they do not consider fractions of minerals in dust. Accumulated knowledge on impacts of mineral composition in dust on weather and climate processes emphasizes the importance of considering minerals in modelling systems. Following such needs, in this study we developed a global dataset on mineral composition of potentially dust productive soils. In our study (a) we mapped mineral data into a high-resolution 30-s grid, (b) we included mineral carrying soil types in dust productive regions that were not considered in previous studies, and (c) included phosphorus having in mind their importance for terrestrial and marine nutrition processes.


2020 ◽  
Author(s):  
Yanan Yu ◽  
Christopher Russell ◽  
Peter Chi ◽  
Syed Haider ◽  
Jayesh Pabari ◽  
...  

<p>On Earth, electric discharges in thunderstorms produce ELF waves in the Earth-ionosphere waveguide that circles the globe. These waves give rise to Schumann resonances in the waveguide resonant cavity. These waves are also expected to occur at Venus, produced by strong lightning in the Venus atmosphere and at Mars produced by active dust devils or dust storms, during southern hemisphere summer, when the planet is near periapsis. Within dust storms, dust particles undergo triboelectric charging. The charge transfer leads to charge separation. A lightning discharge is expected to occur when the charge exceeds the breakdown strength of the media present. The transient electric discharge emits electromagnetic waves in the VLF/ELF range of frequency, leading to Schumann Resonance in the surface-ionospheric cavity. In a heterogeneous cavity, Schumann resonance modes are observable using an in-situ instrument. Recently has it been possible to search for these electromagnetic waves from the Mars surface using the UCLA-provided InSight fluxgate magnetometer. The weakness of the vertical component of ULF waves at Mars suggests that the subsurface is electrically conducting, allowing trapping of electromagnetic energy between the sub-surface and the ionosphere. The fundamental mode of Schumann resonance carries higher energy compared to there are more chances of observing the fundamental mode. Various values of the first mode are predicted in the literature for Mars like 13-14 Hz or between 9-14 Hz and 17.5 Hz. Even if the fundamental mode is above 10 Hz, the 20 Hz sampling rate will allow detection of an aliased signal. We examine the data obtained during Martian sandstorms for the possible existence of such waves. A large dust storm was detected on Mars beginning on InSight sols 40 to 50, and ending during sols 50 to 90. Examining the 20 Hz InSight magnetometer data during this period reveals no clearly identifiable Schumann Resonance signals within the bandwidth of the magnetometer.</p>


2018 ◽  
Author(s):  
Lu She ◽  
Yong Xue ◽  
Jie Guang ◽  
Yahui Che ◽  
Cheng Fan ◽  
...  

Abstract. The deserts in East Asia are one of the most influential mineral dust source regions in the world. Large amounts of dust particles are emitted and transported to distant regions. A super dust storm characterized by long-distance transport occurred over the Pan-Eurasian Experiment (PEEX) area in early May 2017. In this study, multi-satellite/sensor observations and ground-based measurements combined with the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were used to analyse the dynamical processes of the origin and transport of the strong dust storm. The optical and microphysical properties of the dust particles were analysed using Aerosol Robotic Network (AERONET) measurements. From the multi-satellite observations, the dust storms were suggested to have originated from the Gobi Desert on the morning of 3 May 2017, and it transported dust northeastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to southern Central China. The air quality in China drastically deteriorated as a result of this heavy dust storm; the PM10 (particulate matter less than 10 mm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4000 μg/m3. During the dust event, the maximum AOD values reached 3, 2.3, 2.8, and 0.65 with sharp drops in the extinction Ångström exponent (EAE) to 0.023, 0.068, 0.03, and 0.097 at AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk, respectively. The dust storm introduced great variations in the aerosol property, causing totally different spectral single-scattering albedo (SSA) and volume size distribution (VSD). The combined observations revealed comprehensive information about the dynamic transport of dust and the dust affected regions, and the effect of dust storms on the aerosol properties.


2020 ◽  
pp. 1-15
Author(s):  
Anca Nemuc ◽  
Sara Basart ◽  
Aurelio Tobias ◽  
Slobodan Nickovic ◽  
Francesca Barnaba ◽  
...  

Amongst the most significant extreme meteorological phenomena are the Sand and Dust Storms (SDS). Owing to significant amounts of airborne mineral dust particles generated during these events, SDS have impacts on climate, the environment, human health, and many socio-economic sectors (e.g. aviation, solar energy management). Many studies and reports have underlined that the society has to understand, manage and mitigate the risks and effects of SDS on life, health, property, the environment and the economy in a more unified way. The EU-funded European Cooperation in Science and Technology (COST) Action ‘InDust: International network to encourage the use of monitoring and forecasting Dust products’ has an overall objective to establish a network involving research institutions, service providers and potential end users on airborne dust information. We are a multidisciplinary group of international experts on aerosol measurements, aerosol modelling, stakeholders and social scientists working together, exchanging ideas to better coordinate and harmonize the process of transferring dust observation and prediction data to users, as well as to assist the diverse socio-economic sectors affected by the presence of high concentrations of airborne mineral dust. This article highlights the importance of being actively engaged in research networking activities, supported by EU and COST actions since common efforts help not only each scientist by shaping their expertise and strengthening their position, but also all communities.


2010 ◽  
Vol 10 (4) ◽  
pp. 8899-8925 ◽  
Author(s):  
Q. Ma ◽  
Y. Liu ◽  
C. Liu ◽  
J. Ma ◽  
H. He

Abstract. Mineral dust comprises of a significant fraction of the globe's aerosol loading. Yet it remains the largest uncertainty in future climate predictions due to the complexity in its components and physico-chemical properties. Multi-analysis methods, including SEM-EDX, FTIR, BET, TPD/mass, and Knudsen cell/mass, were used in the present study to characterise Asian dust storm particles. The morphology, element fraction, source distribution, true uptake coefficient of SO2 and hygroscopic behaviour were studied. The major components of Asian dust storm particles were found to consist of aluminosilicate, SiO2, and CaCO3, which were coated with organic compounds and inorganic nitrate. The dust storm particles have a low reactivity to SO2 (true uptake coefficient of 5.767×10−6) which limits the conversion of SO2 to sulfate during a dust storm period. The low reactivity also demonstrated that the heterogeneous reaction of SO2, in both dry and humid air conditions, had little effect on the hygroscopic behaviour of the dust particles. These results indicate that the impact of dust storms on atmospheric SO2 removal should not be overestimated.


2021 ◽  
pp. 47-56
Author(s):  
Ali Al-Dousari ◽  
Noor Al-Dousari

AbstractA dust storm is meteorologically defined whenever visibility is less than 1,000 meters (Al-Kulaib 1990). Al-Dousari (2009) lists Kuwait as having one of the highest dust precipitation rates in the world. Safar (1980) states that the annual average number of dusty days due to dust storms or rising dust or suspended dust in Kuwait is 255.4. Forty-seven sampling sites representing all the geomorphological and sedimentological provinces in Kuwait were selected for the installation of dust traps to measure the average annual amount of deposited dust during 2009–2010 and 2010–2011 in tons.km-2.


Author(s):  
Beenish Hafeez ◽  
Shahid Iqbal ◽  
Areeba Asif ◽  
Meera Tariq

The study was conducted at University of Gujrat during 2015 with an objective to explore the effects of dust on Free Space Optics (FSO) communication. Growing pollution and dust gales motivated studies we presented in this paper. In this paper analysis of the influence of dust on free space optics communication is presented. We focused our studies on Lahore as it is polluted city of Punjab and made a comparison with dust effects in Rahimyar Khan Region. Dense dust consists of large dust particles that raise from Earths sphere and whose atmospheric intensification values are high enough to affect FSO communication links. Dust storm research is based on visibility data. In order to test visibility data, we made calculations of atmospheric conditions for different dust conditions. Visibility of wave is calculated using weather spark. As it is related with the optical attenuation, so we also calculated optical attenuation of dust particles due to influence of dust particles and compared it with that of Rahimyar Khan.


2021 ◽  
Vol 13 (6) ◽  
pp. 1056
Author(s):  
Lili Yang ◽  
Zhiyuan Hu ◽  
Zhongwei Huang ◽  
Lina Wang ◽  
Wenyu Han ◽  
...  

Dust storms have occurred frequently in northwest China and can dramatically reduce visibility and exacerbate air quality in downwind regions through long-range transport. In order to study the distribution characteristics of dust particles sizes, structures and concentrations in the process of dust storm, especially for the vertical distributions, the multi-observation platform composed of six Lidars and nine aerosol analytical instruments is first used to detect a severe dust storm event, which occurred in Northwest China on 3 May 2020. As a strong weather system process, the dust storm has achieved high intensity and wide range. When the intensity of a dust storm is at its strongest, the ratios of PM2.5 (particulate matter with diameter < 2.5 µm) and PM10 (particulate matter with diameter < 10 µm) (PM2.5/PM10) in cities examined were less than 0.2 and the extinction coefficients became greater than 1 km−1 based on Lidar observations. In addition, the growth rates of PM2.5 were higher than that of PM10. The dust particles mainly concentrated at heights of 2 km, after being transported about 200–300 km, vertical height increased by 1–2 km. Meanwhile, the dust concentration decreased markedly. Furthermore, the depolarization ratio showed that dust in the Tengger Desert was dominated by spherical particles. The linear relationships between 532 nm extinction coefficient and the concentration of PM2.5 and PM10 were found firstly and their R2 were 0.706 to 0.987. Our results could give more information for the physical schemes to simulate dust storms in specific models, which could improve the forecast of dust storms.


Sign in / Sign up

Export Citation Format

Share Document