scholarly journals Investigation of severe dust storms over the Pan-Eurasian area using multi-satellite observations and ground-based measurements

2018 ◽  
Author(s):  
Lu She ◽  
Yong Xue ◽  
Jie Guang ◽  
Yahui Che ◽  
Cheng Fan ◽  
...  

Abstract. The deserts in East Asia are one of the most influential mineral dust source regions in the world. Large amounts of dust particles are emitted and transported to distant regions. A super dust storm characterized by long-distance transport occurred over the Pan-Eurasian Experiment (PEEX) area in early May 2017. In this study, multi-satellite/sensor observations and ground-based measurements combined with the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were used to analyse the dynamical processes of the origin and transport of the strong dust storm. The optical and microphysical properties of the dust particles were analysed using Aerosol Robotic Network (AERONET) measurements. From the multi-satellite observations, the dust storms were suggested to have originated from the Gobi Desert on the morning of 3 May 2017, and it transported dust northeastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to southern Central China. The air quality in China drastically deteriorated as a result of this heavy dust storm; the PM10 (particulate matter less than 10 mm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4000 μg/m3. During the dust event, the maximum AOD values reached 3, 2.3, 2.8, and 0.65 with sharp drops in the extinction Ångström exponent (EAE) to 0.023, 0.068, 0.03, and 0.097 at AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk, respectively. The dust storm introduced great variations in the aerosol property, causing totally different spectral single-scattering albedo (SSA) and volume size distribution (VSD). The combined observations revealed comprehensive information about the dynamic transport of dust and the dust affected regions, and the effect of dust storms on the aerosol properties.

2014 ◽  
Vol 14 (15) ◽  
pp. 7847-7857 ◽  
Author(s):  
H. Lei ◽  
J. X. L. Wang

Abstract. To improve dust storm identification over the western United States, historical dust events measured by air quality and satellite observations are analyzed based on their characteristics in data sets of regular meteorology, satellite-based aerosol optical depth (AOD), and air quality measurements. Based on the prevailing weather conditions associated with dust emission, dust storm events are classified into the following four typical types: (1) The key feature of cold front-induced dust storms is their rapid process with strong dust emissions. (2) Events caused by meso- to small-scale weather systems have the highest levels of emissions. (3) Dust storms caused by tropical disturbances show a stronger air concentration of dust and last longer than those in (1) and (2). (4) Dust storms triggered by cyclogenesis last the longest. In this paper, sample events of each type are selected and examined to explore characteristics observed from in situ and remote-sensing measurements. These characteristics include the lasting period, surface wind speeds, areas affected, average loading on ground-based optical and/or air quality measurements, peak loading on ground-based optical and/or air quality measurements, and loading on satellite-based aerosol optical depth. Based on these analyses, we compare the characteristics of the same dust events captured in different data sets in order to define the dust identification criteria. The analyses show that the variability in mass concentrations captured by in situ measurements is consistent with the variability in AOD from stationary and satellite observations. Our analyses also find that different data sets are capable of identifying certain common characteristics, while each data set also provides specific information about a dust storm event. For example, the meteorological data are good at identifying the lasting period and area impacted by a dust event; the ground-based air quality and optical measurements can capture the peak strength well; aerosol optical depth (AOD) from satellite data sets allows us to better identify dust-storm-affected areas and the spatial extent of dust. The current study also indicates that the combination of in situ and satellite observations is a better method to fill gaps in dust storm recordings.


2018 ◽  
Vol 18 (12) ◽  
pp. 3187-3201 ◽  
Author(s):  
Lu She ◽  
Yong Xue ◽  
Jie Guang ◽  
Yahui Che ◽  
Cheng Fan ◽  
...  

Abstract. One or several aspects of the source, distribution, transport, and optical properties of airborne dust have been characterized using different types of satellite and ground measurements, each with unique advantages. In this study, a dust event that occurred over the East Asia area in May 2017 was exemplified to demonstrate how all the above-mentioned aspects of a dust event can be pictured by combining the advantages of different satellite and ground measurements. The data used included the Himawari-8 satellite Advanced Himawari Imager (AHI) true-colour images, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol vertical profiles, the Aura satellite Ozone Monitoring Instrument (OMI) aerosol index images, and the ground-based Aerosol Robotic Network (AERONET) aerosol properties and the ground station particulate matter (PM) measurements. From the multi-satellite/sensor (AHI, CALIOP, and OMI) time series observations, the dust storm was found to originate from the Gobi Desert on the morning of 3 May 2017 and transport north-eastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to south-central China. The air quality in China deteriorated drastically: the PM10 (PM < 10 µm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4333 µg m−3. At the AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk AERONET sites, the maximum aerosol optical depth values reached 2.96, 2.13, 2.87, and 0.65 and the extinction Ångström exponent dropped to 0.023, 0.068, 0.03, and 0.097, respectively. The dust storm also induced unusual aerosol spectral single-scattering albedo and volume size distribution.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 269 ◽  
Author(s):  
Jie Li ◽  
Longyi Shao ◽  
Lingli Chang ◽  
Jiaoping Xing ◽  
Wenhua Wang ◽  
...  

Beijing frequently experiences dust storms during spring, which result in deteriorated visibility and cause negative health impacts. In this paper, the dust particles were collected during a dust storm episode on 4–5 May 2017 in Beijing, and the samples before and after the dust storm were also collected. The morphology and elemental and mineralogical compositions of the dust samples were investigated using a transmission electron microscope equipped with an energy-dispersive X-ray spectrometer (TEM-EDX) and X-ray diffraction (XRD). The TEM-EDX results showed that the particles in the dust samples were mainly Si-rich, Ca-rich, S-rich, Fe-rich, Al-rich, Ti-rich, K-rich, Na-rich and Mg-rich particles. The XRD results demonstrated that the minerals in PM10 samples were mainly clay, calcite, quartz, dolomite, plagioclase, potassium feldspar and hematite, in descending order of their contents. The clay minerals, having the highest content, were mainly kaolinite, chlorite and illite. The mixing state and aging degree of mineral particles before, during and after the dust storm episode behaved very differently. The mineral particles collected before and after the dust storm tended to have an internal mixing state, dominated by the S-rich particles internally mixed with alkaline mineral particles, revealing a more serious ageing degree. The mineral particles collected during the dust storm did not show clear internal mixing, revealing a less serious ageing degree. The amount of the Si-rich, Al-rich, Ca-rich and Ti-rich particles was highest during the dust storm, indicating that these particles mainly originated from long-distance transportation. The S-rich, Fe-rich, K-rich, Na-rich and Mg-rich particles were mainly enriched in the samples before and after the dust storm episode, indicating that they mainly originated from local sources. A comparison of the values of S/(Si + Al) in the individual particles with the particle sizes revealed that the finer mineral particles were associated with higher S contents before and after the dust storm, while the coarse particles were associated with lower S contents during the dust storm.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Emilie Aragnou ◽  
Sean Watt ◽  
Hiep Nguyen Duc ◽  
Cassandra Cheeseman ◽  
Matthew Riley ◽  
...  

Dust storms originating from Central Australia and western New South Wales frequently cause high particle concentrations at many sites across New South Wales, both inland and along the coast. This study focussed on a dust storm event in February 2019 which affected air quality across the state as detected at many ambient monitoring stations in the Department of Planning, Industry and Environment (DPIE) air quality monitoring network. The WRF-Chem (Weather Research and Forecast Model—Chemistry) model is used to study the formation, dispersion and transport of dust across the state of New South Wales (NSW, Australia). Wildfires also happened in northern NSW at the same time of the dust storm in February 2019, and their emissions are taken into account in the WRF-Chem model by using Fire Inventory from NCAR (FINN) as emission input. The model performance is evaluated and is shown to predict fairly accurate the PM2.5 and PM10 concentration as compared to observation. The predicted PM2.5 concentration over New South Wales during 5 days from 11 to 15 February 2019 is then used to estimate the impact of the February 2019 dust storm event on three health endpoints, namely mortality, respiratory and cardiac disease hospitalisation rates. The results show that even though as the daily average of PM2.5 over some parts of the state, especially in western and north western NSW near the centre of the dust storm and wild fires, are very high (over 900 µg/m3), the population exposure is low due to the sparse population. Generally, the health impact is similar in order of magnitude to that caused by biomass burning events from wildfires or from hazardous reduction burnings (HRBs) near populous centres such as in Sydney in May 2016. One notable difference is the higher respiratory disease hospitalisation for this dust event (161) compared to the fire event (24).


2012 ◽  
Vol 12 (21) ◽  
pp. 10209-10237 ◽  
Author(s):  
K. Wang ◽  
Y. Zhang ◽  
A. Nenes ◽  
C. Fountoukis

Abstract. The US Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes), nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust), offline-coupled with the Weather Research and Forecast model (WRF), is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ~111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM), PM with aerodynamic diameter of 10 μm, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5) over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, reducing O3 by up to 3.8 ppb (~9%) and SO2 by up to 0.3 ppb (~27%)) and as a source for some others (e.g., increasing fine-mode SO42− by up to 1.1 μg m−3 (~12%) and PM2.5 by up to 1.4 μg m−3 (~3%)) over the domain. The long-range transport of Asian pollutants can enhance the surface concentrations of gases by up to 3% and aerosol species by up to 20% in the Western US.


2017 ◽  
Vol 30 (17) ◽  
pp. 6683-6700 ◽  
Author(s):  
Qingyu Guan ◽  
Xiazhong Sun ◽  
Jing Yang ◽  
Baotian Pan ◽  
Shilei Zhao ◽  
...  

Airborne dust derived from desertification in northern China can be transported to East Asia and other regions, impairing human health and affecting the global climate. This study of northern China dust provides an understanding of the mechanism of dust generation and transportation. The authors used dust storm and climatological data from 129 sites and normalized difference vegetation index (NDVI) datasets in northern China to analyze spatiotemporal characteristics and determine the main factors controlling dust storms occurring during 1960–2007. Dust storm–prone areas are consistent with the spatial distribution of northern China deserts where the average wind speed (AWS) is more than 2 m s−1, the mean annual temperature (MAT) ranges from 5° to 10°C, and the mean annual precipitation (MAP) is less than 450 mm. Dust storms commonly occur on spring afternoons in a 3- to 6-h pattern. The three predominant factors that can affect DSF are the maximum wind speed, AWS, and MAT. During 1960–2007, dust storm frequency (DSF) in most regions of northern China fluctuated but had a decreasing trend; this was mainly caused by a gradual reduction in wind speed. The effect of temperature on DSF is complex, as positive and negative correlations exist simultaneously. Temperatures can affect source material (dust, sand, etc.), cyclone activity, and vegetation growth status, which influence the generation of dust storms. NDVI and precipitation are negatively correlated with DSF, but the effect is weak. Vegetation can protect the topsoil environment and prevent dust storm creation but is affected by the primary decisive influence of precipitation.


2021 ◽  
Vol 8 (2) ◽  
pp. 77-86
Author(s):  
Elham Borna ◽  
Maryam Kiani Sadr ◽  
Seyed Ahmad Hosseini

Background: This study combined ground and satellite observations with the results of HYSPLIT model to identify the origin, transport, and deposition of sand and dust storms (SDSs) affecting Western Iran. Methods: Field-measured dust exposure data were obtained during 2000-2014 to analyze variability of dust concentration and dust intensity at annual, monthly, and daily scales. Remote sensing measurements in this research include the analysis of a total of eight (Level 1B Calibrated Radiances 1 km (MOD021KM)) MODIS tiles selected based on interpreting the results of ground observations to capture the major SDS events occurred between 2000 and 2014. Results: The results, indicating a sharp rise in the number of dusty days from 2008 onwards, were used as a basis to identify the spatial coverage and intensity of SDSs over the central part of the Middle East and the study province using a number of eight MODIS images. According to the back trajectory analysis of Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT), the MODIS-derived SDSs were found to have both national and international sources. The most prevalent and powerful source was likely to initiate from deserts of Syria and Iraq by air masses coming from the Mediterranean Sea and terminate in Western Iran where the Zagros Mountains Chain blocks easterly winds. Conclusion: Despite the evident link between timing of regional SDSs and in situ observations, the contribution of local dust sources in the west of the province should be also investigated to provide insights into the development and spread of SDS events affecting Western Iran, especially Lorestan Province.


2022 ◽  
Author(s):  
Jianbing Jin ◽  
Mijie Pang ◽  
Arjo Segers ◽  
Wei Han ◽  
Li Fang ◽  
...  

Abstract. This spring, super dust storms reappeared in East Asia after being absent for a (two) decade(s). The event caused enormous losses both in Mongolia and in China. Accurate simulation of such super sandstorms is valuable for the quantification of health damages, aviation risks, and profound impacts on the Earth system, but also to reveal the driving climate and the process of desertification. However, accurate simulation of dust life cycles is challenging mainly due to imperfect knowledge of emissions. In this study, the emissions that lead to the 2021 spring dust storms are estimated through assimilation of MODIS AOD and ground-based PM10 concentration data. To be able to use the AOD observations to represent the dust load, an Angstrom-based data screening is designed to select only observations that are dominated by dust. In addition, a non-dust AOD bias correction has been designed to remove the part of the AOD that could be attributed to other aerosols than dust. With this, the dust concentrations during the 2021 spring super storms could be reproduced and validated with concentration observations. The emission inversion results reveal that wind blown dust emissions originated from both China and Mongolia during spring 2021. Specifically, 18.3M and 27.2M ton of particles were released in Chinese desert and Mongolia desert respectively during these severe dust events. By source apportionment it has been estimated that 58 % of the dust deposited in the densely populated Fenwei Plain (FWP) in the northern China originate from transnational transport from Mongolia desert. For the North China Plain (NCP), local Chinese desert play a less significant roles in the dust affection; the long-distance transport from Mongolia contributes for about 69 % to the dust deposition in NCP, even if it locates more than 1000 km away from the nearest Mongolian desert.


2013 ◽  
Vol 13 (5) ◽  
pp. 14195-14220 ◽  
Author(s):  
H. Lei ◽  
J. X. L. Wang

Abstract. In order to better understand the characteristics of dust storm processes over the western United States, available dust storm events reported by media or recorded by NASA earth observatory are classified into four types based on the prevailing weather systems. Then these four types of dust storm events related to cold fronts, downbursts, tropical disturbances, and cyclogenesis and their selected typical representative events are examined to explore their identifiable characteristics based on in-situ and remote sensing measurements. We find that the key feature of cold front-induced dust storms is their rapid process with strong dust emissions. Events caused by rapid downbursts have the highest rates of emissions. Dust storms due to tropical disturbances show stronger air concentrations of dust and last longer than those caused by cold fronts and downbursts. Finally, dust storms caused by cyclogenesis last the longest. The analysis of particulate matter records also shows that the relative ratio of PM10 (size less than 10 μm) values on dust storm-days to non-dust storm-days is a better indicator of event identification compared to previous established indicators. Moreover, aerosol optical depth (AOD) measurements from both in-situ and satellite datasets allow us to capture dust storm processes. We show that MODIS AOD retrieved from the deep blue data better identify dust storm-affected areas and the spatial extension of event intensity. Our analyses also show that the variability in mass concentrations during dust storm processes captured only by in-situ observations is consistent with the variability in AOD from stationary or satellite observations. The study finally indicates that the combination of in-situ and satellite observations is a better method to fill gaps in dust storm recordings.


2012 ◽  
Vol 12 (5) ◽  
pp. 13457-13514 ◽  
Author(s):  
K. Wang ◽  
Y. Zhang ◽  
A. Nenes ◽  
C. Fountoukis

Abstract. The US Environmental Protection Agency (EPA)'s Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online-dust emission schemes, nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust), offline-coupled with the Weather Research and Forecast model (WRF), are applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ∼111 and 223 Tg when the erodible fraction is assumed to be 0.5 and 1.0, respectively, for the April 2001 episode. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM), PM with aerodynamic diameter of 10 μm and aerosol optical depth than default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5) over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, O3 by up to 3.8 ppb (∼9%) and SO2 by up to 0.3 ppb (∼27%)) and as a source for some others (e.g., fine-mode SO42− by up to 1.1 μg m−3 (∼12%) and PM2.5 by up to 1.4 μg m−3 (∼3%) over the domain. The long-range transport of Asian pollutants can enhance the background concentrations of gases by up to 3% and aerosol species by up to 20% in the US.


Sign in / Sign up

Export Citation Format

Share Document