scholarly journals A hybrid approach for scheduling applications in cloud computing environment

Author(s):  
Ahmed Subhi Abdalkafor ◽  
Khattab M. Ali Alheeti

Cloud computing plays an important role in our daily life. It has direct and positive impact on share and update data, knowledge, storage and scientific resources between various regions. Cloud computing performance heavily based on job scheduling algorithms that are utilized for queue waiting in modern scientific applications. The researchers are considered cloud computing a popular platform for new enforcements. These scheduling algorithms help in design efficient queue lists in cloud as well as they play vital role in reducing waiting for processing time in cloud computing. A novel job scheduling is proposed in this paper to enhance performance of cloud computing and reduce delay time in queue waiting for jobs. The proposed algorithm tries to avoid some significant challenges that throttle from developing applications of cloud computing. However, a smart scheduling technique is proposed in our paper to improve performance processing in cloud applications. Our experimental result of the proposed job scheduling algorithm shows that the proposed schemes possess outstanding enhancing rates with a reduction in waiting time for jobs in queue list.

2010 ◽  
Vol 2 (1) ◽  
pp. 34-50 ◽  
Author(s):  
Nikolaos Preve

Job scheduling in grid computing is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids. The main scope of this article is to propose a new Ant Colony Optimization (ACO) algorithm for balanced job scheduling in the Grid environment. To achieve the above goal, we will indicate a way to balance the entire system load while minimizing the makespan of a given set of jobs. Based on the experimental results, the proposed algorithm confidently demonstrates its practicability and competitiveness compared with other job scheduling algorithms.


2013 ◽  
Vol 662 ◽  
pp. 957-960 ◽  
Author(s):  
Jing Liu ◽  
Xing Guo Luo ◽  
Xing Ming Zhang ◽  
Fan Zhang

Cloud computing is an emerging high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. The performance of the scheduling system influences the cost benefit of this computing paradigm. To reduce the energy consumption and improve the profit, a job scheduling model based on the particle swarm optimization(PSO) algorithm is established for cloud computing. Based on open source cloud computing simulation platform CloudSim, compared to GA and random scheduling algorithms, the results show that the proposed algorithm can obtain a better solution concerning the energy cost and profit.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Ibrahim Attiya ◽  
Mohamed Abd Elaziz ◽  
Shengwu Xiong

In recent years, cloud computing technology has attracted extensive attention from both academia and industry. The popularity of cloud computing was originated from its ability to deliver global IT services such as core infrastructure, platforms, and applications to cloud customers over the web. Furthermore, it promises on-demand services with new forms of the pricing package. However, cloud job scheduling is still NP-complete and became more complicated due to some factors such as resource dynamicity and on-demand consumer application requirements. To fill this gap, this paper presents a modified Harris hawks optimization (HHO) algorithm based on the simulated annealing (SA) for scheduling jobs in the cloud environment. In the proposed HHOSA approach, SA is employed as a local search algorithm to improve the rate of convergence and quality of solution generated by the standard HHO algorithm. The performance of the HHOSA method is compared with that of state-of-the-art job scheduling algorithms, by having them all implemented on the CloudSim toolkit. Both standard and synthetic workloads are employed to analyze the performance of the proposed HHOSA algorithm. The obtained results demonstrate that HHOSA can achieve significant reductions in makespan of the job scheduling problem as compared to the standard HHO and other existing scheduling algorithms. Moreover, it converges faster when the search space becomes larger which makes it appropriate for large-scale scheduling problems.


Author(s):  
S. Rekha ◽  
C. Kalaiselvi

This paper studies the delay-optimal virtual machine (VM) scheduling problem in cloud computing systems, which have a constant amount of infrastructure resources such as CPU, memory and storage in the resource pool. The cloud computing system provides VMs as services to users. Cloud users request various types of VMs randomly over time and the requested VM-hosting durations vary vastly. A multi-level queue scheduling algorithm partitions the ready queue into several separate queues. The processes are permanently assigned to one queue, generally based on some property of the process, such as memory size, process priority or process type. Each queue has its own scheduling algorithm. Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-priority queue. Multi-level queue scheduling is performed via the use of the Particle Swarm Optimization algorithm (MQPSO). It checks both Shortest-Job-First (SJF) buffering and Min-Min Best Fit (MMBF) scheduling algorithms, i.e., SJF-MMBF, is proposed to determine the solutions. Another scheme that combines the SJF buffering and Extreme Learning Machine (ELM)-based scheduling algorithms, i.e., SJF- ELM, is further proposed to avoid the potential of job starva¬tion in SJF-MMBF. In addition, there must be scheduling among the queues, which is commonly implemented as fixed-priority preemptive scheduling. The simulation results also illustrate that SJF- ELM is optimal in a heavy-loaded and highly dynamic environment and it is efficient in provisioning the average job hosting rate.


2020 ◽  
Vol 13 (3) ◽  
pp. 326-335
Author(s):  
Punit Gupta ◽  
Ujjwal Goyal ◽  
Vaishali Verma

Background: Cloud Computing is a growing industry for secure and low cost pay per use resources. Efficient resource allocation is the challenging issue in cloud computing environment. Many task scheduling algorithms used to improve the performance of system. It includes ant colony, genetic algorithm & Round Robin improve the performance but these are not cost efficient at the same time. Objective: In early proven task scheduling algorithms network cost are not included but in this proposed ACO network overhead or cost is taken into consideration which thus improves the efficiency of the algorithm as compared to the previous algorithm. Proposed algorithm aims to improve in term of cost and execution time and reduces network cost. Methods: The proposed task scheduling algorithm in cloud uses ACO with network cost and execution cost as a fitness function. This work tries to improve the existing ACO that will give improved result in terms of performance and execution cost for cloud architecture. Our study includes a comparison between various other algorithms with our proposed ACO model. Results: Performance is measured using an optimization criteria tasks completion time and resource operational cost in the duration of execution. The network cost and user requests measures the performance of the proposed model. Conclusion: The simulation shows that the proposed cost and time aware technique outperforms using performance measurement parameters (average finish time, resource cost, network cost).


Sign in / Sign up

Export Citation Format

Share Document