scholarly journals Fractional-order sliding mode controller for the two-link robot arm

Author(s):  
Trong-Thang Nguyen

In this paper, the author proposes a sliding mode controller with the fractional-order for the two-link robot arm. Firstly, the model and dynamic equations of the two-link robot arm are presented. Based on these equations, the author builds the controller for each joint of the robot. The controller is a sliding mode controller with its order is not an integer value. The task of the controller is to adjust the torques acted on the joints in order for the angular coordinates of each link to coincide with the desired values. The effectiveness of the proposed control system is demonstrated through Matlab-Simulink software. The robot model and controller are built to investigate the system quality. The results show that the quality of the control system is very high: there is not the chattering phenomenon of torques, the response angles of each link quickly reach the desired values, and the static error equal to zero.

Author(s):  
Trong-Thang Nguyen

In this research, the author presents the model of the two-link robot arm and its dynamic equations. Based on these dynamic equations, the author builds the sliding mode controller for each joint of the robot. The tasks of the controllers are controlling the Torque in each Joint of the robot in order that the angle coordinates of each link coincide with the desired values. The proposed algorithm and robot model are built on Matlab-Simulink to investigate the system quality. The results show that the quality of the control system is very high: the response angles of each link quickly reach the desired values, and the static error equal to zero.


2013 ◽  
Vol 6 (21) ◽  
pp. 4009-4015 ◽  
Author(s):  
Qiang Gao ◽  
Haijun Chen ◽  
Guolai Yang ◽  
Jilin Chen ◽  
Yuanlong Hou

Author(s):  
Manh-Cuong Nguyen ◽  
Duc-Phuc Vuong

In this paper, the authors propose an optimal controller for the ship motion. Firstly, the model and dynamic equations of the ship motion are presented. Based on the model of the ship motion, the authors build the linear quadratic regular algorithm-based control system of ship motion to minimize the error between the desired trajectory and the response trajectory. The task of the controller is to control the trajectory of the ship to coincide with the desired trajectory. The ship model and controller are built to investigate the system quality through Matlab-Simulink software. The results show that the quality of the hold control system is very high. The trajectory of a ship always follows the desired trajectory with very small errors.


Sign in / Sign up

Export Citation Format

Share Document