scholarly journals Unmanned aerial vehicle-aided cooperative regenerative relaying network under various environments

Author(s):  
Thanh-Luan Nguyen ◽  
Duy-Hung Ha ◽  
Phu Tran Tin ◽  
Hien Dinh Cong

This paper studies a cooperative relay network that comprises an unmanned aerial vehicle (UAV) enabling amplify-and-forward (AF) and power splitting (PS) based energy harvesting. The considered system can be constructed in various environments such as suburban, urban, dense urban, and high-rise urban where the air-to-ground channels are model by a mixture of Rayleigh and Nakagami-m fading. Then, outage probability and ergodic capacity are provided under different environment-based parameters. Optimal PS ratios are also provided under normal and high transmit power regimes. Finally, the accuracy of the analytical results is validated through Monte Carlo methods.

2018 ◽  
Vol 69 ◽  
pp. 628-641 ◽  
Author(s):  
Anand Gachhadar ◽  
MHD Nour Hindia ◽  
Faizan Qamar ◽  
M. Hassam Shakil Siddiqui ◽  
Kamarul Ariffin Noordin ◽  
...  

Frequenz ◽  
2015 ◽  
Vol 69 (3-4) ◽  
Author(s):  
Jian Ouyang ◽  
Min Lin

AbstractIn this paper, we investigate a wireless communication system employing a multi-antenna unmanned aerial vehicle (UAV) as the relay to improve the connectivity between the base station (BS) and the receive node (RN), where the BS–UAV link undergoes the correlated Rician fading while the UAV–RN link follows the correlated Rayleigh fading with large scale path loss. By assuming that the amplify-and-forward (AF) protocol is adopted at UAV, we first propose an optimal beamforming (BF) scheme to maximize the mutual information of the UAV-assisted dual-hop relay network, by calculating the BF weight vectors and the power allocation coefficient. Then, we derive the analytical expressions for the outage probability (OP) and the ergodic capacity (EC) of the relay network to evaluate the system performance conveniently. Finally, computer simulation results are provided to demonstrate the validity and efficiency of the proposed scheme as well as the performance analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tianci Wang ◽  
Guangyue Lu ◽  
Yinghui Ye ◽  
Yuan Ren

This paper investigates an energy-constrained two-way multiplicative amplify-and-forward (AF) relay network, where a practical nonlinear energy harvesting (NLEH) model is equipped at the relay to realize simultaneous wireless information and power transfer (SWIPT). We focus on the design of dynamic power splitting (DPS) strategy, in which the PS ratio is able to adjust itself according to the instantaneous channel state information (CSI). Specifically, we first formulate an optimization problem to maximize the outage throughput, subject to the NLEH. Since this formulated problem is nonconvex and difficult to solve, we further transfer it into an equivalent problem and develop a Dinkelbach iterative method to obtain the corresponding solution. Numerical results are given to verify the quick convergence of the proposed iterative method and show the superior outage throughput of the designed DPS strategy by comparing with two peer strategies designed for the linear energy harvesting (LEH) model.


Sign in / Sign up

Export Citation Format

Share Document