scholarly journals An enhanced control strategy based imaginary swapping instant for induction motor drives

Author(s):  
Iliass Rkik ◽  
Mohamed El Khayat ◽  
Abdelali Ed-Dahhak ◽  
Mohammed Guerbaoui ◽  
Abdeslam Lachhab

<p>The main aim of this paper is to present a novel control approach of an induction machine (IM) using an improved space vector modulation based direct torque control (SVM-DTC) on the basis of imaginary swapping instant technique. The improved control strategy is presented to surmount the drawbacks of the classical direct torque control (DTC) and to enhance the dynamic performance of the induction motor. This method requires neither angle identification nor sector determination; the imaginary swapping instant vector is used to fix the effective period in which the power is transferred to the IM. Both the classical DTC method and the suggested adaptive DTC techniques have been carried out in MATLAB/SimulinkTM. Simulation results shows the effectiveness of the enhanced control strategy and demonstrate that torque and flux ripples are massively diminished compared to the conventional DTC (CDTC) which gives a better performance. Finally, the system will also be tested for its robustness against variations in the IM parameters.</p>

2020 ◽  
Vol 8 (5) ◽  
pp. 2113-2117

Induction Motor is popular option for most of the drives applications. It has simple construction but complex control. DC motor like decoupled control of induction motor drives similar to Field Oriented control is possible using Direct Torque Control (DTC) method which is very simple control strategy compared to vector control. The DTC strategy is very useful for automobile and traction applications using IM but due to use of hysteresis band controllers, DTC has problems of torque ripples, variable switching frequency and poor low speed performance. Because of these reasons, DTC is used in such applications for high speed range and not for the whole speed range. An improved DTC strategy suitable for wide range speed control is suggested in this paper which is based on a performance index calculated on the basis of what is the value of THD of stator current, value of operating speed and switching frequency. It uses new five level variable width torque hysteresis band controller and two level variable width hysteresis band flux controller along with new hybrid model for stator flux estimation. This improved strategy is designed to maintain simplicity of conventional DTC and give better performance than it. This new strategy is simulated using Matlab/Simulink


2016 ◽  
Vol 40 (1) ◽  
pp. 279-286 ◽  
Author(s):  
Taner Goktas ◽  
Müslüm Arkan

This paper proposes a method for separation of broken rotor bar failures from low-frequency load torque oscillation in direct torque control (DTC) induction motor drives by using vq voltage and iq current components’ spectra. The effect of load torque oscillation should be considered in induction motor drives for reliable broken bar fault detection. Induction machine drivers are run in DTC mode to control its torque and speed. In practice, the presence of load torque fluctuation may sometimes cause false positive alarms on stator current spectrum. However, discerning of broken rotor bar failure from low-frequency load variation for DTC drives remains unexplored. Experimental results show that by using the proposed method broken rotor bar failure can be reliably detected in the presence of low-frequency load torque oscillation in DTC induction motor drives.


Author(s):  
Arkan A. Kadum

This paper presents a new adaptive hysteresis band control approach used in direct torque control (DTC) of the induction motor (IM) drives with the switching tables for the generation of PWM signals. Constant Hysteresis Direct torque control (CHB-DTC) method used the torque and stator flux errors to generate the stator voltage reference and frequency vectors for controlling the three-phase induction motor. The CHB-DTC gives better torque transient performance but it has large steady state ripples. To reduce torque and stator current ripples in CHB-DTC controlled induction motor drives a new adaptive hysteresis band control (AHB) approach is proposed, where the hysteresis band is adapted in real time with the stator flux and torque errors variation, instead of fixed bandwidth. Both classical CHB-DTC method and the proposed adaptive hysteresis band DTC (AHB-DTC) fed three induction motor have been simulated using Matlab/Simulink. The simulation results at different operating conditions over a wide speed range demonstrate the validity, effectiveness, and feasibility of the proposed scheme. The measurements showed that torque ripples were significantly decrease with the new AHB-DTC technique and better speed response in step up or down compared to the CHB-DTC.


Sign in / Sign up

Export Citation Format

Share Document