scholarly journals Bandwidth density optimization of misaligned optical interconnects

Author(s):  
Hasan Aldiabat ◽  
Nedal Al-ababneh

In this paper, the bandwidth density of misaligned free space optical interconnects (FSOIs) system with and without coding under a fixed bit error rate is considered. In particular, we study the effect of using error correction codes of various codeword lengths on the bandwidth density and misalignment tolerance of the FSOIs system in the presence of higher order modes. Moreover, the paper demonstrates the use of the fill factor of the detector array as a design parameter to optimize the bandwidth density of the communication. The numerical results demonstrate that the bandwidth density improves significantly with coding and the improvement is highly dependent on the used codeword length and code rate. In addition, the results clearly show the optimum fill factor values that achieve the maximum bandwidth density and misalignment tolerance of the system.

2019 ◽  
Vol 40 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Rajat Kumar Giri ◽  
Bijayananda Patnaik

Abstract In this paper, we study the performance improvement of free space optical (FSO) communication system with spatial diversity techniques employing hybrid pulse position modulation-binary phase shift keying-subcarrier intensity modulation (PPM-BPSK-SIM). The involvement of multiple photo-detectors in diversity based FSO systems offers an effective way to overcome scntillation. In this paper, we have simulated the bit error rate (BER) with respect to different parameters like average SNR, link distance at various weather conditions. The simulation results are verified in Matlab environment with the mathematical analysis. The simulation results show that higher order single input multiple output (SIMO) system achieves better BER performance and hybrid PPM-BPSK-SIM has significant improved performance than the common modulation schemes like PPM, BPSK-SIM.


2019 ◽  
Vol 8 (4) ◽  
pp. 8292-8295

Free Space Optical (FSO) link using gamma-gamma channel model has been studied in this paper. Comparison of the probability density function of gamma-gamma distribution under weak and strong turbulence regime has been performed. Performance of Bit error rate (BER) using different subcarrier-intensity modulation (SIM) schemes such as binary phase shift keying (BPSK), M-ary phase shift keying (M-PSK) and quadrature amplitude modulation (QAM) have been also investigated. Using MATLAB software, the BER is plotted with respect to normalized signal to noise ratio (SNR) and the link distance. All the analysis has been done using the Gamma-Gamma distribution model. In this work we found that the effectiveness of each modulation technique depends on the environment.


2020 ◽  
Vol 23 (1) ◽  
pp. 159-171
Author(s):  
Ahmad Baheej

The multipath phenomenon is a major factor that is continually affected negatively the performance of wireless communication systems. Since the receiver gets different copies of the transmitted signal from various paths at different times. Consequently, destructive or constructive interference can occur. Therefore, the performance of wireless communication systems is poor in term of bit error rate. This phenomenon can be taken as an advantage if the multiple – input – multiple – output antenna systems are employed at both transmitter and receiver sides (antenna diversity) to improve the bit error rate performance. This paper focuses on the combination of multipath forward error correction diversity technique with vertical-Bell laboratories layered space-time coding. This will lead to enhance the bit error rate in wireless communication systems. The proposed system used Rayleigh and additive white Gaussian noise as two different channel models. The multipath forward error correction diversity technique treats the multipath propagated signals as unessential copies, to utilise them to enhance the bit error rate limitation in the multiple – input – multiple – output systems. The simulation results showed that the performance of the proposed system can be gradually improved by increasing the number of utilised multipath signals in the multipath forward error correction diversity technique


Sign in / Sign up

Export Citation Format

Share Document