scholarly journals Optimal Integration of the Renewable Energy to the Grid by Considering Small Signal Stability Constraint

Author(s):  
I Made Wartana ◽  
Ni Putu Agustini ◽  
Jai Govind Singh

In recent decades, one of the main management’s concerns of professional engineers is the optimal integration of various types of renewable energy to the grid. This paper discusses the optimal allocation of one type of renewable energy i.e. wind turbine to the grid for enhancing network’s performance. A multi-objective function is used as indexes of the system’s performance, such as increasing system loadability and minimizing the loss of real power transmission line by considering security and stability of systems’ constraints viz.: voltage and line margins, and eigenvalues as well which is representing as small signal stability. To solve the optimization problems, a new method has been developed using a novel variant of the Genetic Algorithm (GA), specifically known as Non-dominated Sorting Genetic Algorithm II (NSGA-II). Whereas the Fuzzy-based mechanism is used to support the decision makers prefer the best compromise solution from the Pareto front. The effectiveness of the developed method has been established on a modified IEEE 14-bus system with wind turbine system, and their simulation results showed that the dynamic performance of the power system can be effectively improved by considering the stability and security of the system.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4777 ◽  
Author(s):  
Olusayo A. Ajeigbe ◽  
Josiah L. Munda ◽  
Yskandar Hamam

This paper solves the allocation planning problem of integrating large scale renewable energy hybrid distributed generations and capacitor banks into the distribution systems. Extraordinarily, the integration of renewable energy hybrid distributed generations such as solar photovoltaic, wind, and biomass takes into consideration the impact assessment of variable generations from PV and wind on the distribution networks’ long term dynamic voltage and small-signal stabilities. Unlike other renewable distributed generations, the variability of power from solar PV and wind generations causes small-signal instabilities if they are sub-optimally allocated in the distribution network. Hence, the variables related to small-signal stability are included and constrained in the model, unlike what is obtainable in the current works on the planning of optimal allocation of renewable distributed generations. Thus, the model is motivated to maximize the penetration of renewable powers by minimizing the net present value of total cost, which includes investment, maintenance, energy, and emission costs. Consequently, the optimization problem is formulated as a stochastic mixed integer linear program, which ensures limited convergence to optimality. Numerical results of the proposed model demonstrate a significant reduction in electricity and emission costs, enhancement of system dynamic voltage and small-signal stabilities, as well as improvement in welfare costs and environmental goodness.


Sign in / Sign up

Export Citation Format

Share Document