scholarly journals Performance Evaluation of Two Port and Four Port Measurement for Twisted Pair Cable

Author(s):  
Azhari Bin Asrokin ◽  
Mohamad Kamal Bin A. Rahim

A balance-unbalance (balun) transformer is commonly used to connect the balance 100 Ohm twisted pair cable to the unbalance 50 Ohm network analyzer ports, but due to the limitations of the core (i.e. ferrite) inside the balun, the balun can only effectively operates at a certain band of frequencies. This limitation can be eliminated by using a 4-port vector network analyzer (VNA) which is done by connecting the VNA’s ports to each conductor end. The extracted S-parameters will then be transformed to a 2-port S-parameters in differential mode at both ports. To validate the measurement technique, S-parameter measurement by using the 4-Port Network Analyzer without any balun will be compared to the measurement which used the 2-Port Network Analyzer with the balun transformers. Two twisted pair cable distances are selected as reference which are 500, and 1000 meters with nominal copper diameter of 0.5mm. Based on the measurement results, the 4-ports measurement shows good correlation with the 2-ports measurement especially at 500m distance. This shows that the 4-ports measurement setup is suitable to be used to measure twisted pair copper cable and possible to measure at a higher frequency band such as up to 500 MHz but at a shorter twisted pair cable distance.

Author(s):  
Т.С. Глотова ◽  
Д.В. Журавлёв ◽  
В.В. Глотов

Различные типы СВЧ-устройств можно описать с помощью падающих и отражённых волн, которые распространяются в подключенных к ним линиях передач. Связь между этими волнами описывается волновой матрицей рассеяния или матрицей s-параметров. Оценка дифференциальных структур необходима для обеспечения оптимальных характеристик схемы. Комбинированные дифференциальные и синфазные (смешанные) параметры рассеяния (s-параметры) хорошо адаптированы для точных измерений линейных сетей на радиочастотах. Представлено преобразование между стандартными s-параметрами и s-параметрами смешанного режима, также описано графическое сравнение графиков стандартных и смешанных потерь s-параметра. S-параметры смешанного режима, полученные с помощью описанного метода, имеют хорошее согласие для возбудителя и реакции с одним и тем же режимом (общий или дифференциальный) и небольшую вариацию с разными режимами. Была изготовлена дифференциальная структура, которая измеряется с помощью двухпортового векторного анализатора цепей и четырехпортового анализатора цепей смешанного режима. Для прогнозирования поведения параметров смешанного режима с использованием традиционного двухпортового векторного анализатора цепей можно применить метод преобразования режимов, однако четырехпортовый анализатор цепей смешанного режима по-прежнему необходим для точного измерения влияния режима преобразования в реальные интегрированные дифференциальные тестовые структуры Various types of microwave devices can be described using incident and reflected waves that propagate in the transmission lines connected to them. The relationship between these waves is described by the scattering wave matrix or the S-parameter matrix. Evaluation of differential structures is necessary to ensure optimal circuit performance. The combined differential and common-mode (mixed) scatter parameters (s-parameters) are well suited for accurate measurements of linear networks at radio frequencies. We present the transformation between standard s-parameters and mixed-mode s-parameters, and a graphical comparison of graphs of standard and mixed s-parameter losses is also described. S-parameters of the mixed mode, obtained using the described method, have good agreement for the pathogen and the reaction with the same mode (general or differential) and little variation with different modes. We fabricated and measured a differential structure with a two-port vector network analyzer and a four-port mixed-mode network analyzer. Mode conversion can be used to predict the behavior of mixed-mode parameters using a traditional 2-port vector network analyzer, but a four-port mixed-mode network analyzer is still required to accurately measure the effect of conversion mode on real integrated differential test structures


Author(s):  
Keith Harber ◽  
Steve Brockett

Abstract This paper outlines the failure analysis of a Radio Frequency only (RF-only) failure on a complex Multimode Multiband Power Amplifier (MMPA) module, where slightly lower gain was observed in one mode of operation. 2 port S-parameter information was collected and utilized to help localize the circuitry causing the issue. A slight DC electrical difference was observed, and simulation was utilized to confirm that difference was causing the observed S-parameters. Physical analysis uncovered a very visible cause for the RF-only failure.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 427-433
Author(s):  
Yaxin Liu ◽  
Feng Wei ◽  
Xiaowei Shi ◽  
Cao Zeng

AbstractIn this paper, a balanced-to-balanced (BTB) branch-slotline directional coupler (DC) is firstly presented, which can realize an arbitrary power division ratios (PDRs). The coupler is composed by microstrip-to-slotline (MS) transition structures and branch-slotline coupled structures. The single-ended to balanced-ended conversion is simplified and easy to implemented by the MS transition structures, which intrinsically leads to the differential-mode (DM) transmission and common-mode (CM) suppression. Moreover, the different PDRs which are controlled by the widths of branch-slotlines can be achieved. In order to verify the feasibility of the proposed design method, two prototype circuits of the proposed coupler with different PDRs are fabricated and measured. The return loss and the isolation of two designs are all better than 10 dB. Moreover, the CM suppressions are greater than 35 dB. A good agreement between the simulation and measurement results is observed.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 303
Author(s):  
Giovanni Gugliandolo ◽  
Zlatica Marinković ◽  
Giuseppe Campobello ◽  
Giovanni Crupi ◽  
Nicola Donato

Nowadays, surface acoustic wave (SAW) resonators are attracting growing attention, owing to their widespread applications in various engineering fields, such as electronic, telecommunication, automotive, chemical, and biomedical engineering. A thorough assessment of SAW performance is a key task for bridging the gap between commercial SAW devices and practical applications. To contribute to the accomplishment of this crucial task, the present paper reports the findings of a new comparative study that is based on the performance evaluation of different commercial SAW resonators by using scattering (S-) parameter measurements coupled with a Lorentzian fitting and an accurate modelling technique for the straightforward extraction of a lumped-element equivalent-circuit representation. The developed investigation thus provides ease and reliability when choosing the appropriate commercial device, depending on the requirements and constraints of the given sensing application. This paper deals with the performance evaluation of commercial surface acoustic wave (SAW) resonators by means of scattering (S-) parameter measurements and an equivalent-circuit model extracted using a reliable modeling procedure. The studied devices are four TO-39 packaged two-port resonators with different nominal operating frequencies: 418.05, 423.22, 433.92, and 915 MHz. The S-parameter characterization was performed locally around the resonant frequencies of the tested SAW resonators by using an 8753ES Agilent vector network analyzer (VNA) and a home-made calibration kit. The reported measurement-based study has allowed for the development of a comprehensive and detailed comparative analysis of the performance of the investigated SAW devices. The characterization and modelling procedures are fully automated with a user-friendly graphical user interface (GUI) developed in the Python environment, thereby making the experimental analysis faster and more efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. R. B. Cruz ◽  
T. van Woensel

This review provides an overview of the queueing modeling issues and the related performance evaluation and optimization approaches framed in a joined manufacturing and product engineering. Such networks are represented as queueing networks. The performance of the queueing networks is evaluated using an advanced queueing network analyzer: the generalized expansion method. Secondly, different model approaches are described and optimized with regard to the key parameters in the network (e.g., buffer and server sizes, service rates, and so on).


Sign in / Sign up

Export Citation Format

Share Document