scholarly journals Initial Optimal Parameters of Artificial Neural Network and Support Vector Regression

Author(s):  
Edy Fradinata ◽  
Sakesun Suthummanon ◽  
Wannarat Suntiamorntut

This paper presents architecture of backpropagation Artificial Neural Network (ANN) and Support Vector Regression (SVR) models in supervised learning process for cement demand dataset. This study aims to identify the effectiveness of each parameter of mean square error (MSE) indicators for time series dataset. The study varies different random sample in each demand parameter in the network of ANN and support vector function as well. The variations of percent datasets from activation function, learning rate of sigmoid and purelin, hidden layer, neurons, and training function should be applied for ANN. Furthermore, SVR is varied in kernel function, lost function and insensitivity to obtain the best result from its simulation. The best results of this study for ANN activation function is Sigmoid. The amount of data input is 100% or 96 of data, 150 learning rates, one hidden layer, trinlm training function, 15 neurons and 3 total layers. The best results for SVR are six variables that run in optimal condition, kernel function is linear, loss function is ౬-insensitive, and insensitivity was 1. The better results for both methods are six variables. The contribution of this study is to obtain the optimal parameters for specific variables of ANN and SVR.

Author(s):  
Nitesh Pradhan ◽  
VijayPal Singh Dhaka ◽  
Satish Chandra Kulhari

Background: Diabetes is spreading in the entire world. In a survey, it is observed that every generation from child to old age people are suffering from diabetes. If diabetes is not identified in time, it may lead to deadliest disease. Prediction of diabetes is of the utmost challenging task by machines. In the human body, diabetes is one of the perilous maladies that creates depended disease such as kidney disease, heart attack, blindness etc. Thus it is very important to diagnose diabetes in time. Objective: Our target is to develop a system using Artificial Neural Network(ANN), with the ability to predict whether a patient suffers from diabetes or not. Method: This paper illustrates various machine learning techniques in form of literature review; such as Support Vector Machine, Naïve Bayes, K Nearest Neighbor, Decision Tree, Random Forest Etc. We applied ANN to predict diabetes. In this paper, the architecture of ANN consists of four hidden layers each of six neurons and one output layer with one neuron. Optimizer used for the architecture is ‘Adam’. Results: We have Pima Indian diabetes dataset of sufficient number of patients with nine different symptoms with respect to the patients and nine different features in connection with the mathematical computation/prediction. Hence we bifurcate the dataset into training and testing set in majority and minority ratio of 80:20 respectively. It facilitates us the majority patient’s data to be used as training set and minority data to be used as testing set. We train our network for multiple epoch with different activation function. We used four hidden layers with six neurons in each hidden layer and one output layer. On the hidden layer, we used multiple activation functions such as sigmoid, ReLU etc. and obtained beat accuracy (88.71%) in 600 epochs with ReLU activation function. On the output layer, we used only sigmoid activation function because we have only two classes in our dataset. Conclusion: Diabetes prediction by machine is a challenging task. So many machine learning algorithms exist to predict the diabetes such as Naïve Bayes, decision tree, K nearest neighbor, support vector machine etc. This paper presents a novel approach to predict whether a patient has diabetes or not based on Pima Indian diabetes dataset. In this paper, we used artificial neural network to train out network and it is observed that artificial neural network approach performs better than all other classifiers


Author(s):  
Jiaqi Lyu ◽  
Souran Manoochehri

Abstract With the development of Fused Deposition Modeling (FDM) technology, the quality of fabricated parts is getting more attention. The present study highlights the predictive model for dimensional accuracy in the FDM process. Three process parameters, namely extruder temperature, layer thickness, and infill density, are considered in the model. To achieve better prediction accuracy, three models are studied, namely multivariate linear regression, Artificial Neural Network (ANN), and Support Vector Regression (SVR). The models are used to characterize the complex relationship between the input variables and dimensions of fabricated parts. Based on the experimental data set, it is found that the ANN model performs better than the multivariate linear regression and SVR models. The ANN model is able to study more quality characteristics of fabricated parts with more process parameters of FDM.


2020 ◽  
Vol 128 (8) ◽  
pp. 085306
Author(s):  
Ibrahim Olanrewaju Alade ◽  
Mohd Amiruddin Abd Rahman ◽  
Amjed Hassan ◽  
Tawfik A. Saleh

2020 ◽  
Vol 66 (No. 1) ◽  
pp. 1-7
Author(s):  
Mahdi Rashvand ◽  
Mahmoud Soltani Firouz

Olives are one of the most important agriculture crops in the world, which are harvested in different stages of growth for various uses. One of the ways to detect the adequate time to process the olives is to determine their moisture content. In this study, to determine the moisture content of olives, a dielectric technique was used in seven periods of harvesting and three different varieties of olive including Oily, Mary and Fishemi. The dielectric properties of the olive fruits were measured using an electronic device in the range of 0.1–30 MHz. Artificial Neural Network (ANN) and Support Vector Regression (SVR) methods were applied to develop the prediction models by using the obtained data acquired by the system. The best results (R = 0.999 and MSE = 0.014) were obtained by the ANN model with a topology of 384–12–1 (384 features in the input vector, 12 neurons in the hidden layer and 1 output). The results obtained indicated the acceptable accuracy of the dielectric technique combined with the ANN model.


Sign in / Sign up

Export Citation Format

Share Document